Introduction to Visual Programming using VB.NET

A first exercise.

The objective of this first exercise is to get you started right away by creating a simple but complete working visual Basic.NET program. Although the program is reasonably complex the nice thing is that you will see how easy it is to create it in this environment. Visual Basic.NET is a very productive programming system.

The program is called Spin-and-Win and is a simple emulation of a lucky-number arcade game. The final programme will look like this:-

[image: image12.png]

The Spin-and-Win Interface has one label, two buttons, three boxes and an image; i.e. seven objects in total. The program works as follows. The user clicks on the ‘Spin’ button. The program then generates three random numbers and places these in the number boxes. If any of the numbers generated is a 7, then the user has won, and gets to see the image. If no 7s are generated then the user has lost and the image is not displayed.

To create this program you must follow three essential steps in VB.NET:-

1. Create the user interface

2. Set the properties for each object in the interface

3. Write the program code.

In this example there are 7 objects, 12 properties to set, and 2 objects for which code must be provided.

So, lets do it....

Creating the User Interface
To begin the process we must create a new project. You will have too perform thios procedure for every Visual project you create
 Create a New Project

1. Start Visual Studio .NET 2003
2. On the Visual Studio Start Page, click the New Project button.

The New Project Dialog box appears.

3. In the list of Project Types, select Visual Basic Projects;
4. In the list of Templates click the Windows Application icon.

5. In the name Text box, type MySpin-and-Win, and then specify the location. .

Note that the location will depend on your local environment. It is a very good idea to save every VB project in its own folder. So your location might typically be:

 U:\vbnet2004\example1

You can click the Browse button to specify the location.
6. Visual Studio assigns the name MySpin-and-Win to and then prepares to create a new folder named MySpin-and-Win on the hard disc for the project. The New Project dialog box should look like this:-

[image: image2.png]roject Types: Templates: 5

Visual 14 Projects Windows Class Lbrary Windowis
1 0 Viual G+ Projects Applcation Control Ubrary

Setup and Deployment Projects
'va. ng.

(11 Other Projects
Visual Studio Solutions

Smart Device ASP.NET Web ASP.NET Web

Applcation Appication Service

A projectfor creating an application with a Windows user nterface.

Name [Widowsagcatont

Location: DriVisua Basic o et Games <] brouse.

Project wil be created at D:|Viua Basic dot Net Games!WindowsApplcationt.

e == o

Click OK to create the new project in Visual Studio.

Visual studio starts the new project and displays a new blank Windows form in the centre of the screen. The form is typically entitled Form1.
Creating the User Interface
Position the mouse pointer over the lower right-hand corner of the form until the mouse changers into a re-sozing pointer, and drag the form to increase its size to make room for the objects in your program.

When you have done this, your screen should look much like this:

[image: image3.png]Ble Edt Vew Projct Buld Debug Data Fomat Took Window Help

A-a-s0a @o » Debug o | RE R

Todbox 2 x|/ Surtpage Formlvb [Design]* | 4bx

Data P o
Comparents
Windows Forms
X Ponter
A Label

A Unkiabel
Button

Texttox
Mairienu

Chedtgox

Radiobuttan

Groupgox

PictureBox.

Panel

Datacrid

ListBox

[CheckeduistBox

Clipboard Ring -
General

B8 server Expl... 3 Toobox [| O = o

Task List - 0 Buld Errr tasks shown (fitered)

EEOR G Q@E

1] [l Description Fie Line

Solton Exglrer - indaw... & X
=2E 88
199 Solution Windowsapplicationt’ (1
=" 3 windowsapplicationt
- @ References
9 assanblyinfo.sb

Form.vb

< 2
Properties 2 x
Form1_System Windows. Forms. <

4il=

RightToLeft N -

ShownTastbar True

See 472,368

SizeGripstyle Auto
SnapToGrid True
StartPostion WindowsDefaul

Tag
Text Form1 =
Text

The text contained in the cortrol,

B Properties [@ Oynaric Help

Now lets add our first button.

1. Click the Button icon in the toolbox
2. Place the mouse button over the form

The mouse pointer changes to crosshairs and a button icon Click the left mouse button again and the new button will snap to the grid on the form.

If the button is not exactly where you want it you can select it again and drag it to wherever you want it to be. If the button is not the correct size, you can select any corner or centre resize handle on the button and drag it to change the width, height or both.

The form with the resize handles on the button should look similar to this:-

 Resize handle
[image: image1.png]

Next, add a second button the same size as the first and just below it.

Move or rezize the button as necessary. You will find that this is very easy to do once you have tried it.

Now add the number labels. A label is a special user interface element designed to display text, numbers or symbols.

1. Click the label control in the Toolbox;

2. Place the mouse button over the form;

The cursor changes to crosshairs and a letter A icon;

3. Draw a rectangular box like the one shown in the following illustration:-
The label object you have created is entitled Label1, the first label in the program.

[image: image4.png]

4. Next create two more labels, Label2 and Label 3. Click the label control in the toolbox again and then draw a label box to the right of the first one. Make this label the same size as the first. It will be automatically named Label2. (Note that you can select the label, then copy and paste it. This ensures that it is exactly the same size. Then all you need to do is move it into place.)
5. Now add a third label in a similar manner. This will be automatically named Label3.

6. Now add another bigger label below the buttons. This will be used to display the name of the game, Spin-and-Win.

When you have done this, the form should resemble the following:-

[image: image5.png]Label

Labell Label2

Labet3

It only remains to add a picture.

1. Click on the PictureBox control in the Toolbox;

2. Put the cursor over the form and click again. Now draw a large box underneath the three number labels.

When you have done this, your form should resemble the following:-

[image: image6.png]Labell Label2 Labet3

Buttan
Buttan2
= o o
Label
n o

The Picture box object will be named PictureBox1 in your program. This This however, will not be displayed on the actual box.

Now we have the seven objects in place we can begin to set the properties for each of them.

Setting the Properties

Firstly we shall set the button properties

1. Click on Button1 on the form;

The button is selected and surrounded by resize handles.

2. Double-click the Properties window title bar;

(Note: If the properties window isn’t visible, click the Properties window command on the View menu, or press shortcut function-key F4)

3. Resize the properties window so that you have room to see the property names and their settings.

The Property window lists the settings for the currently selected object. These include colour, text fonts, text size,

Because there are so many properties, Visual Studio arranges them into categories and displays them in outline view. If you want to see the properties in a category, ckick the plus sign (+) next to the category title.

[image: image7.png]L

AecessbieRole Defat =

=
BackColor [control
Backgroundimage O tnone)
e
e s
ForeColor W Controirext
Inage 1 trone)
Inogedicn adecomer
Inageindex 1 trone)
ImageList (nane)
)
Yot dgacariar

The text contained in the cortrol,

4. Scroll the properties window until you see the Text property in the Appearance category.

5. Double-click the Text property in the left-hand column of the properties window.

The current setting, (“Button1”) is highlighted in the Properties window.

6. Type Spin, and press enter.

The Text property changes to “Spin” in the properties window, and in the button on the form
7. Now change the Text property of Button2 to “End”
Open the Object drop-down list box at the top of the properties window

A list of the objects in your program appears as follows:-

[image: image8.png][Labels_Systm Windons P Lol

Buttoni 5ystem Windows.Forms.Button

tton

Form1system. windows.Forms.Form
Label1 System.windows.Forms.Label
Label2 System.windows.Forms.Label
Label3 System.indows.Forms.Label
Labeld _System.windows.Forms.Label

RightToLeft o
Text Labeld
Texthlgn TopLeft
Usetemoric Tue

a
Alowdrep False
Autosize Fale
Contexteny (none)
Enabled Tue
Tablndex s
visble True

Text

The text contained in the cortrol,

8 Click Button2 System.Windows.Forms.Button (The second button) in the list box.

The property settings for the second button appear in the properties window, and Visual Studio highlights Button2 on the Form.

9
Double-click the current Text property (“Button2”), type “End”, and press Enter.

The text of the second button changes to “End”.

Note that you can select the objects on the form or use the drop-down list on the Properties window as you prefer. The latter is generally quicker.

Next we will set the properties for the labels in the program. The first three labels will hold the random numbers generated by the program and will have identical property settings. The descriptive label settings will be slightly different.

Setting the Number Label Properties
1. Click the first number label (label1), and then, hold down the shift key and click the second and third number labels. The Labels will appear selected in a similar manner to previously selected objects. There will be resize handles around each label. WE will change the following Appearance category properties: TexTalign, Font and BorderStyle.

Note how convenient this is. Changing properties in a group of selected objects is quicker and less error-prone than doing each set individually.

2. Click the TextAlign property in the Properties window and then click the drop-down menu arrow on the right-hand side. From the options which appear, select MiddleCentre.
3. Now, in a similar manner, change the Borderstyle property to FixedSingle. A thin borderline is drawn around each label. Experiment with the other options and chose the one you prefer.
4. Next select the Font Property in the Properties window. Now click the ellipsis button (the one with three dots) next to the current font setting. This will produce the Font Dialog box as follows:-

Change the Font to Times New Roman, and the Font size to 24 point.

5. Next we will delete the text in each of the three labels. Note that the font properties will not be changed by this as they are associated with the labels as properties regardless of the content of the label. However, you need to delete the text in each label individually. To do this, deselect the labels by clicking anywhere on the form that is outside of an object. Then click the first label, select its Text property (by double-clicking), press the delete key and press Enter.
6. Remove the text from labels two and three in a similar manner.

Now we will set the properties for the 4th label. This is a descriptive label. From your experience of changing the properties for buttons 1, 2, and 3, this should be a n easy task. Set the font to Times New Roman 28 point and change the ForeColor property to a colour of your preference. Experiment with these fonts and colours.

7. Now we will set the properties for the picture box. This is a little more fiddly. You need to set the SizeMode property to accurately size the picture, and set the image property to set the name of the JPEG file that you will load into the picture box. You will also need to set the visible property so that the picture is not visible at the start of the program. (It will be made visible by the program code if and when you ‘score’ a seven)
8. You should by now, be able to select the picturebox and alter its properties. You should note the following:-

· If you select the SizeMode property and set this to ‘StretchImage’, then, when the graphic is opened, Visual Basic will resize the graphic to the exact dimensions of the picture box. This means that you need to set the size of the picture box before you open the graphic. This would be pretty normal procedure anyhow. The picturebox size is typically set at design time and the graphic is typically opened when the program is run.
· The ‘name’ of the image must include its location (i.e. the pathname needed to find it. So, if it is called winpic.jpg and is located in a subfolder of your U: drive then use the dialog box to navigate to U:\vbnet2004\example1 and click on the image icon.

· You should change the Visible property to false so that the image is not visible initially. The Visible property is in the Behavior category of the Properties box. (The drop-down list gives the (two) options for this property.)
Your completed form should look like this:-
[image: image9.png]Form1

Spin

Writing the Code

It only remains to write the code to drive the application. One of the great aspects of Visual Basic.NET is tha when you design the program, most of the code for the objects in your design is automatically generated. The objects are ready to ‘behave’ as you require them to do in the application. So they are variously readt to input information, output information and respond appropriately. However, all of the code can’t be generated automatically (Pity). We need to write the code statements that generate the random numbers, put them in the correct locations and detect whether or not the player has won. The input to the game is via the Spin and the End buttons and so these are the objects with which the program logic will be associated.

The Code Editor
Even though we must generate the actual code ourselves, Visual Studio makes this process pretty easy. If you double-click on an object, the code editor opens up at the code associated with that object. (For details on and explanations of procedures and sub-procedures see the set text).
The Sub procedure associated with the end button is about as simple as it gets so lets look at this first. The code associated with a button is referred to as an Event-handler. i.e. it defines what the program should do in the event that the button is clicked. If you double click on the End button you will see the following code in the Code Editor window.

[image: image10.png]CPublic Class Formi
Inherits System.Vindows.Forms.Form

Windows Form Designer generated code

) Private Sub Buttonz_Click(ByVal sender As System.Object, ByVal e ks

End sub

Recall that Button2 was the one we labelled End; (Button1 is labelled Spin).

Consider the Sub-procedure
Private Sub Button2_Click(ByVal sender As System.Object,_

 ByVal e As System.EventArgs) Handles Button2.Click

End Sub

The body of the sub-procedure lies between these two lines
and is executed when the user activates the object. This is a (mouse) click event procedure and so the code in the body of the procedure executes when the user clicks the button.

What we need to happen in this event is that the program ends, so lets enter the code.

With the cursor at the start of the line in the middle of the sub-procedure, type End, and then press the down-arrow key. The letters will turn blue indicating that this has been recognized as a valid keyword.

Phew..All that discussion for just one word of typing…!

So, now the Subprocedure should look like this:-

Private Sub Button2_Click(ByVal sender As System.Object,_

 ByVal e As System.EventArgs) Handles Button2.Click

End

End Sub

The program statement End terminates a program and removes it from the screen.
Now lets write the code for the Spin button.

Double click on the spin button and you will get the event procedure associated with the spin button:-

[image: image11.png]Private Sub Buttoni_Click(ByVal sender ks System.Object, ByVal g
Ag System.Eventhrgs) Handles Buttoni.Click

End sub

There is a little more code to be associated with this button: Here it is:-

PictureBox1.Visible = False ' hide picture

Label1.Text = CStr(Int(Rnd() * 10)) ' pick numbers

Label2.Text = CStr(Int(Rnd() * 10))

Label3.Text = CStr(Int(Rnd() * 10))

' if any caption is 7 display picture and beep

If (Label1.Text = "7") Or (Label2.Text = "7") _

Or (Label3.Text = "7") Then

PictureBox1.Visible = True

 Beep()

 End If

This may look a little daunting at first. However, programmers learn never to be put off by apparent complexity. We can read the code line by line and decipher what each line does. There are apparently ten lines of code (there are only nine really..but see later). Lets talk through them.
The first line is

 PictureBox1.Visible = False ' hide picture

Remember that we are now instructing the computer program on how to behave when the Spin button is clicked. So what happens is that the picture box Visible property is set to False. Note the format Object.Property = attribute. This is followed by a comment. Comments in Visual Basic are preceded by the 'symbol, and, incidentally, are the most important lines in the code.

You may recall that you set the Visible property to False during the design stage, so why are we setting it again here? Well, the design stage determines the state of the program when it is initialized. So when it starts up we need the picture to be invisible. However, when the program is running, each time the user ‘Spins’, the result may be that the picture is made visible (a win). So when the user spins for a second or subsequent time, we need to clear the picture again right at the start of each spin.
The second, third and 4th lines are almost identical and identify what happens to Labels 1, 2, and 3, respectively when the event sub-procedure is activated.

Lets look at the code for Label1

Label1.Text = CStr(Int(Rnd() * 10))

This tells us that the (Object) Label1’s Text property must be set to whatever all that code to the right of the equals sign means. So, what does it mean?
A statement like this is actually several statements nested. To interpret a nested statement, work outwards from the deepest nested parentheses (). So we have Rnd() which calls a random number generator. This produces a random number in the range 0 -0.99999999… The exact precision is not important here.
Then (Rnd() * 10) multiplies the number by 10 to produce a number in the range 0 – 9.9999999…
Next (Int(Rnd() * 10) produces an Integer in the range 0 – 9.

However, we are not quite done yet. Although we have got the number we need for the game, we cannoy display an integer in a label control. So we need just one last step to convert the number type into a string type. We do this with the Cstr statement.

So now hopefully CStr(Int(Rnd() * 10))does not seem so complex.
The ‘number’ to be displayed in labels 2 and 3 is determined in exactly the same fashion. Note however that each time the Rnd() call is made, a different random number will be produced.

The remaining code is fairly easy to interpret. The fifth line:-
' if any caption is 7 display picture and beep

Is a comment letting us know what happens next
The sixth line wraps around two lines on the page but it is just one line of code. The …If …Or..Then… , construct tests the Text property of Label1, Label2 and Label3 in turn to determine if any of them holds the character 7. If this condition is true then the seventh and eighth lines of code are executed..i.e. the picture is displayed, and a beep sound is produced. If none of the labels holds a 7 then the seventh and eighth lines of code are not executed, no picture appears and no beep is produced.
Finally the ninth statement, End if is executed. This essentially terminates this If Or Then routine. In this example the next line to be executed is End Sub which terminates the Click-Event routine. The system will then await the next instruction. Either another click on the Spin button, or a click on the End button, whereupon the appropriate routines will be invoked.
So thats it. You have completed the game. Well done.

To run the program:

1 Click the Start button on the standard toolbar;

2 The program will compile and after a short delay, the user interface appears;

3 Click the Spin button. The program will generate three random numbers and display them in the boxes. If a 7 appears you win and get to see the image and hear the ‘Beep’.

But one word of advice. Don’t gamble on it. It really is very predictable. We will discuss this and some enhancements in the class and at the lectures. Meanwhile try the following ‘enhancements’. They are not very difficult but you will probably learn quite a bit by doing them.
Some Enhancement Exercises:-

1. Add a counter to display the number of Spins

2. Add a counter to display the number of Wins;

3. Add a box to display the percentage of winning spins.

These are a little more difficult

4. The game is unreliable; Can you see why?

5. Can you make it more reliable?

6. Is there a fundamental issue here?

