Introduction to Microsoft Visual Studio - Visual Basic.NET (VB.NET):
· Most widely used windows programming language

· Relatively easy to learn

· Create professional looking systems very quickly

· Useful for Prototyping

· Represents a move from 16-bit to 32-bit processors

· Internet Connectivity

· Provides wizards to assist users

Program Development Cycle:

1. Decide what you want the computer to do

2. Decide how you want your program to look on the screen - Interface Design - by drawing objects such as forms (ie ‘windows’), buttons, boxes, and pictures.

3. Define the properties of these objects - name, colour, size, and appearance etc..

4. Write and attach VB.NET code (event procedures) to each control object in order to make them do something

5. Run and Test your program

The code responds to the user interacting with the program through various events such as moving the mouse, clicking the mouse button(s), double clicking or pressing a key.

NB:
Design before you code: Before you start using VB.NET, you should first turn off the computer, sit down with paper and pencil, and decide exactly what you want your computer to do.

Advantages/Disadvantages of VB.NET:

· Easy to get a program up and running quickly

· Excellent as a prototyping tool

· Lots of well-thought-out functionality – for example, there are very nice time and date conversion functions.

· Good interfacing with other Microsoft products (e.g. Excel & Access)

· Quite Cheap

· No pointers, no recursive data structures – lacks sophistication

· Very easy to write bad (spaghetti) programs

· In some cases – limited functionality for example, text boxes don’t allow bolding of part of a piece of text; all or nothing.

· Event-driven programs can do weird things!

1. Loading/Quitting Visual Basic.NET and creating a new application:

To load VB.NET, you should follow these steps:

1. Click on the Start button that appears in the lower left-hand corner of Windows.

2. Highlight All Programs, Microsoft Visual Studio .Net, Microsoft Visual Studio .Net

The following window should appear;
[image: image1.emf]
Figure 1: Start screen for Microsoft Visual Studio .Net

This screen allows you to setup your developer profile and you should ignore it. To start creating a new application or to load an existing project, select the “Get started” option. To create a new application, select the “New Project” button. The dialog in figure 2 should now appear presenting you with several options.
[image: image2.emf]
Figure 2: The Microsoft Visual Studio .Net new project application wizard

For the large part we will be creating standard windows applications in VB.NET. So select the following options and then the “OK” button:

· Project type – select “Visual Basic.NET projects”

· Template – Select “Windows application”

· Name – Anything you want really!

· Location – See the note below

NOTE: I recommend that you save your project to a new temporary folder on the D: drive of the PC rather than your U: drive for the following reasons:

1. Working across the network is not safe. If the network crashes you loose your work!
2. Working across the network is not secure.

3. Developing an application involves several CPU intensive tasks, (compiling, debugging, executing debug code, etc.) Doing this from the local drive of the PC is therefore much faster, and saver!

When you are finished working on your application:

1. Compress your project folder into a .zip file

2. Copy the .zip file to your U: drive for storage and to a Zip disk or floppy (as a backup)

3. Delete your temporary project folder from the local drive.

The VB.NET Desktop:

If you chose to begin a new project, you will be presented with an empty VB.NET Desktop which will look similar to figure 3 below.

There are eight main parts to the VB.NET Desktop, these are;

· Pull-down menus - provide access to the commands you will use to build your application.

· Toolbar - provides quick access to commonly used commands in the programming environment. You click an icon on the toolbar once to carry out the action represented by that icon.

· Toolbox - provides a set of tools used at design time to place controls on a form. You decide what events each control will respond to.

· Solution explorer - lists all the files that make up a single VB.NET program.

· Properties window - at design time, you set the properties of forms and controls by using the properties window. This window displays the properties of the currently selected form or object.

· Form - provides a window where you can draw objects to design your application’s user interface.

· Command window – (accessible by CTRL+ALT+A) is used for executing commands or aliases directly in the Visual Studio .NET environment, bypassing the menu system, or for executing commands that do not appear on any menu.
[image: image3.emf]
[image: image4.emf][image: image5.emf]
[image: image6.emf][image: image7.emf][image: image8.emf]
[image: image9.emf][image: image10.emf]

Figure 3: The Microsoft Visual Studio .Net Visual Basic.NET environment
There is also a code window which allows you to enter the code that is associated with specific objects on your form. You can access this window by double clicking on the relevant object.
The Visual Basic.NET Toolbox: this is something that you must be familiar with since you will use the objects on the toolbox to draw every interface that you create. If this window is not immediately available to you move the mouse cursor to the left of the screen and select the toolbox. To keep this window open click on the thumb tack (circled in red below). The figure below indicates what is available to you;

Figure 4: The Microsoft Visual Studio .Net Visual Basic.NET toolbox

Pointer: Used to select and edit objects
Picture box: A display device which can contain bit-mapped pictures, text and line drawings
Label: Used to display text that the user cannot change
Text box: A text input device which accepts keyboard input and allows editing. It can format and display single or multiple lines of text.
Group box: This is an object which allows other controls to be arranged in logical groups. It has no behaviour on its own.
Command button: Operates like a push button, which is pressed by clicking the mouse on it.
Check box: Displays an on or off value. It is used to display or enter data that can only be one thing or another.
Radio button: Is usually used in a group of similar controls, and is used to select between a number of mutually exclusive options. It is also referred to as a radio button.
Combo box: A device that can be used to enter or select data. It is essentially a single text box attached to a list. An entry can be typed into the text box or an existing entry can be selected.
List box: Just like the list part of a combo box.
Horizontal Scroll bar: A control which can be used to set a level or position of a quantity.
Vertical Scroll bar: As above
Timer: Operates by running a piece of program code at pre-set intervals
Drive List box: A very specialised form of control which is used to select and display from a range of disk drives
Directory List box: Similar to the drive list box, but is used to display files in a specific directory. In general, the three file selection tools - Drive, Directory, and File Lists - are used together to allow the user to select an existing file from a disk, or to specify the name of a new file.
File List box: Use this control to display a list of files selected by their file attributes.
Data Control: Used to access databases. This control represents a means of linked your VB.NET application to an existing database.
OLE: Stands for Object Link Embedding. By adding an OLE control, you can provide the user with a means to access other Windows applications.
2. Creating Applications in VB.NET:

A VB.NET user interface consists of forms and objects. A form is nothing more than a window that appears on the screen. Most VB.NET programs have at least one form, although most programs use several forms. Objects are items that appear on a form, such as command buttons, scroll bars, option buttons, text boxes, or check boxes. An object enables your program to interact with the user.

The Visual Basic.NET Application that you create is composed of several components;

· Project - the name for a single VB.NET application or program, stored as .VB.NETP files

· Form - a window in the application (a project can have multiple forms), stored as .FRM files. Forms contain various objects (from the Toolbox)

· Custom Controls - special VB.NET code objects, stored as .VB.NETX files

· Code Modules - stored as .VB.NET files

Main Menu Options for Managing Projects:

Running an Application: The first form in a project (often Form1) is called the startup form. The program loads this form first and executes the code in the startup form’s Form_Load event.

Ending a Program: the statement that stops a program when it is running is just the End statement. You would typically attach the following code to a command button with the “Exit” caption.

Sub CommandExit_Click

End

End Sub

Defining Properties:
After you create a form and draw some objects on the form, the next step is to define the properties of each form and object. An object’s properties determine the object’s name, colour, size, location, and general appearance on the screen. Different objects have different properties. Each time an object is placed on a form, VB.NET assigns default property values - you should always alter the properties to suit your current application before you start to add the code that makes the objects work.
The figure below illustrates the properties box - you will enter values in the right hand side of this box;

Figure 5: The Properties Window

Control Object Naming Conventions:

When you create an object it is assigned a default name, e.g. Form1 or Command1. When you have a large number of controls of the same type on the one form, keeping the default control names can lead to confusion, especially in a large application with numerous forms. Names like Command1, Command2, Command3, Command4, etc. can quickly lose their significance. Thus it makes sense to change the control names to something much more meaningful & descriptive. The naming convention listed below was introduced by Microsoft in an effort to reduce confusion, promote standardisation, and therefore make maintenance easier.

	Object
	Prefix
	Example

	Form
	frm
	frmFileOpen

	Check Box
	chk
	chkReadOnly

	Combo Box
	cbo
	cboEnglish

	Command Button
	cmd
	cmdExit

	Data
	dat
	dataBiblio

	Directory List Box
	dir
	dirSource

	Drive List Box
	drv
	drvTarget

	File List Box
	fil
	filSource

	Frame
	fra
	fraLanguage

	Grid
	grd
	grdPrices

	Horizontal Scroll Bar
	hsb
	hsbVolume

	Image
	img
	imgIcon

	Label
	lbl
	lblHelpMessage

	Line
	lin
	linVertical

	List Box
	lst
	lstPolicyCodes

	Menu
	mnu
	mnuFileOpen

	OLE
	ole
	oleObject1

	Option
	opt
	optFrench

	Picture Box
	pic
	picDiskSpace

	Text Box
	txt
	txtInputValue

	Timer
	tmr
	tmrAlarm

	Vertical Scroll Bar
	vsb
	vsbRate

Table 1: Naming Conventions for Visual Basic.NET Objects

The following suggestions also apply to naming:

· Begin each separate word in a name with a capital letter, as in FindLastRecord and RedrawMyForm.

· Begin function and method names with a verb, as in InitNameArray or CloseDialog.

· Begin class and property names with a noun, as in EmployeeName or CarAccessory.

· Begin interface names with the prefix "I", followed by a noun or a noun phrase, like IComponent, or with an adjective describing the interface's behavior, like IPersistable. Do not use the underscore, and use abbreviations sparingly, because abbreviations can cause confusion.

· Begin event handler names with a noun describing the type of event followed by the "EventHandler" suffix, as in "MouseEventHandler".

· In names of event argument classes, include the "EventArgs" suffix.

· If an event has a concept of "before" or "after," use a prefix in present or past tense, as in "ControlAdd" or "ControlAdded".

· For long or frequently used terms, use abbreviations to keep name lengths reasonable, for example, "HTML", instead of "Hypertext Markup Language". In general, variable names greater than 32 characters are difficult to read on a monitor set to a low resolution. Also, make sure your abbreviations are consistent throughout the entire application. Randomly switching in a project between "HTML" and "Hypertext Markup Language" will lead to confusion.

· Avoid using names in an inner scope that are the same as names in an outer scope. Errors will result if the wrong variable is accessed. If a conflict occurs between a variable and the keyword of the same name, you must identify the keyword by preceding it with the appropriate type library. For example, if you have a variable called Date, you can use the intrinsic Date function only by calling System.Date.

Properties window

Solution explorer window

Form

Tool bar

Pull-down menus

Toolbox

� EMBED Photoshop.Image.6 \s ���

OLE

Data Control

Line

File List Box

Drive List Box

Vertical Scroll Bar

List Box

� EMBED Photoshop.Image.6 \s ���

Image

Shape

Directory list box

Timer

Horizontal Scroll bar

Combo Box

Properties List - The left column displays all the properties for the selected object; the right column displays the current setting for each property

Object Box - Displays the name of the object for which you can set the properties

� EMBED Photoshop.Image.6 \s ���

� EMBED Photoshop.Image.6 \s ���

� EMBED Photoshop.Image.6 \s ���

_1136622710.psd

_1136636009.psd

_1136620237.psd

_1136621323.psd

_1136619236.psd

