The Visual Basic Programming Language

Variables, Decisions, Loops, procedures & Functions

Every VB program of statements contains both declarative and executable statements.

· Declarative Statements

· Executable Statements

Both types of statements are necessary to make a program do a task. Program statements have a syntax, which is a format which must be followed if the statement is to be correctly interpreted by the language.

Simple Declarations

e.g. Dim n, Dim x As Integer, Dim i%

Basic allows several types of information to be stored in variables, and identifiers of these can be suffixed with characters which indicate what type of data can be stored. For example: in the statement Dim i%Dim , the ‘%’ sign is implicitly defined as being an integer type.

The above variables can be used to store the results or intermediate results of calculations, or simply to store data for later retrieval.

Data Objects

In Visual Basic, there are a range of types of objects that can be used to store data in. The type of data that can be stored in each depends on the type of object used in most cases.

Numeric Data Types

Six basic types: integer, long , single, double, currency, string.

String Data Types

String data types are used to store textual information such as names, addresses and whole documents: e.g. a$ = “Hello World”. Strings can either be variable length or fixed length

Variant type: Dim i

If you use the variant data type to store a variable, VB keeps track of the context in which you are using the variable. It stores it in the correct format for you.

Six Types + Variant
	Type Name
	Description
	Character

	Integer
	2-byte integer
	%

	Long
	4-byte integer
	&

	Single
	4-byte float
	!

	Double
	8-byte float
	#

	Currency
	8-byte fixed decimal
	@

	String
	Character string
	$

	Variant
	Any of above
	

Declarative Statements

Declarative Statements are program statements which tell the language how data should be organised, and how data items can be shared between forms and code modules.

Normally use Dim to declare a variable: Dim x As Integer, Dim name$. You can use Option Explicit to force the programmer to declare all variables.

A variable name

· Must begin with a letter

· Contain only letters, numbers and underscores

· Cannot exceed 40 characters

· Can't be a reserved word.

Arrays and User-Defined Types

Arrays are numbered from zero:

Dim a(100) As Integer
a(0) is first element and a(99) is last element

User-defined types are like structs in C. They must be defined in modules.

Type CustRec

Name As String * 30

Address As String * 40

Balance As Double

End Type
Dim Customer As CustRec

Customer.Address = "20 Mole Hill"

Executable Statements

Executable Statements are statements which cause some operation to be performed while a program is running.

E.g. x = x + 1

Controlling Execution/Decision structures

These are in If Then blocks and Select Case blocks

Examples

Simple use of If Then executing statement

If condition Then

Statement

End If

If X > 0 Then

X = X + 1

End If

Using an alternative with Else
If condition Then

Statements1

Else

Statements2

End If

If X > 0 Then

X = X + 1

Else

X = X -1

End If

Using several alternatives with ElseIf (a single word!)

If X < 0 Then

X = X + 1

ElseIf X = 0 Then

X = X + 2

ElseIf X = 1 Then

X = X + 6

Else

X = X - 1

End If

Select Case

This can be a neater construction in some cases

Select Case testexpression

Case expressionlist1

statements1

Case expressionlist2

statements2

...

Case expressionlistn

statementsn

Case Else

elsestatements

End Select

Select Case (X*X + 1)

Case 1

y = 2

Case 5

y = 3

Case 10

y = 5

Case Else

y = 10

End Select

Loop Structures

There is a good variety of loop structures from which to choose. These include Do .. Loop, For.. Next and While .. Wend

Do While condition

statements

Loop

X = 8

Do While X > 0

X = X - 5

Loop

This checks the condition before proceeding with the loop.

Do

 statements

Loop While condition

Use the structure above if you want the loop to execute at least once.

X = 0

Do

X = X -5

Loop While X > 0

If you want to check a condition before you execute any statements then you use the form shown below:

Do Until Condition

statements

Loop

X = 8

Do Until X <= 0

X = X -5

Loop

Do

statements

Until Condition

X = 0

Do

X = X - 5

Loop Until X <= 0

Sometimes you want to step through:

For .. Next

For counter = start To end [Step increment]

statements

Next [counter]

Dim i

For i = 0 To Screen.FontCount -1

Print Screen.Fonts(i)

Next i

Subroutines and Functions

All executable code in Visual Basic is found inside a procedure. A procedure is always either a function or a subroutine. Subroutines are either event-driven subroutines or ordinary subroutines. We have already met event-driven subroutines such as:

Sub Command1_Click

Text1.Text = "Hello World"

End Sub
The programmer can define ordinary subroutines in any form or code module. For example, the following code will print out the first j squares.

Sub PrintSquares(j As Integer)

For i = 1 to j

Print i*i

Next i

End Sub
The following code will invoke the subroutine twice:

PrintSquares(7)

PrintSquares(4)

A Visual Basic function must always return a value. You can use a function anywhere you can use an expression. For, examples, assume that a the function Linear always returns the value of ax + b. You write it as:

Function Linear(ByVal A As Integer, B As Single, X As Single)

Linear = A * X + B

A = 0

B = 0

X = 0

End Function

You can invoke a function in various ways:

Z = Linear(2, 1.5, 9.3)

H = Z + Linear(3, 8.3, 7.1)

Syntax
The syntax for a Function procedure is:

Function procedurename (arguments) [As type]

statements

End Function
The syntax for a Sub procedure is:

Sub procedurename (arguments)

statements

End Sub
The list of arguments is a list of argument names, separated by commas if there is more than one. The syntax of each argument is:

[ByVal] variablename [()] [As type]

To leave a Sub or function early you use:

Exit Sub
or

Exit Function
as appropriate.

Remarks

You must always put brackets when using a function, even if it has no parameters. Some internal procedures in VB have two forms: one as a function and one as a procedure. For example: see DoEvents.

Public and Private Procedures

Visual Basic promotes the idea of modularity. You design your program in distinct chunks, which interfere with each other as little as possible.

If you want to call a procedure from more than one form you must put it into a code module. By default procedures in a code module are public - available to all other modules. If you want to, you can make a procedure in a code module private to that module.

Scope of Variables

FORM

CODE

[image: image1.wmf]
In the diagram above we see the code for a form and a code module. All procedures can access the variable ddd because it has been defined in global. There are two copies of aaa, each of which is visible to procedures within its own form or code module. There are three copies of bbb, each of which is private to its enclosing procedure.

_878715310

