Database Programming: Tutorial 2

Using Bound Controls to Display Database Information on a Form

After several steps and procedures, you’re finally ready to display some database information on your form. This is the exciting part—but how do you actually do it? Rather than re-creating an Access database table on your form, Visual Basic allows you to display only the fields and records that you want to—you can present an entire grid of database information for your users or only the specific fields that you want them to see. In addition, you can supply a navigation mechanism so that users can browse through all the records in a database, or you can display only specific records. Finally, of course, you can allow your users to modify or even delete information in the underlying database, or you can limit their activity to simply viewing database records. In short, Visual Basic allows you to create a database viewer, or front end, that presents only the information and data access features that you want your users to have. Although I haven’t discussed it, most of the controls on the Windows Forms tab of the Toolbox have the built-in ability to display database information on a form. In Visual Basic terminology, these controls are typically called bound controls. A control is said to be bound to a data source when its Data​Bindings properties are set to valid fields (or columns) in a dataset. After the connection has been established, you can display database information by using methods and properties in the ADO.NET object model. A few of the controls on the Windows Forms tab of the Toolbox that can display database information include TextBox, ComboBox, ListBox, CheckBox, RadioButton, DataGrid, and PictureBox. Specific information about using the DataGrid control to display database information, will be discussed in a later tutorial..

The following exercise shows how you can add a text box object to your form to display information from the Instructors table of the Students.mdb database.

Use a TextBox object to display data

1. Use the TextBox control to draw a text box object in the middle of the form.

Make the text box object wide enough to display the first and last names of a hypothetical instructor from the Students.mdb database.

2. Use the Label control to draw a label object to the left of the text box object.

3. Use the Button control to draw one button object in the lower left corner of the form.

4. Set the following property settings for the objects on the form:
	Object
	Property
	Setting

	TextBox1
	Name

Text
	txtInstructor

(empty)

	Label1
	Name

Text

TextAlign
	lblInstructor

“Instructor”

MiddleRight

	Button1
	Name

Text
	btnLoad

“Load Data”

	Form1
	Text
	“ADO Form”

Your form should look like this:

[image: image1.png]Start Page Form1.vb [Design]* |

= worom T

Istuctor [

o
LoadData

B ODbDatoAdptert B ODbComectiont @ Dsnsiructorst

Now you’ll bind the Instructor field to the text box object (txtInstructor).

5. Click the text box object on the form, and then open the Properties window.

You should undock and widen the Properties window so that you have plenty of room to see the structure of the Instructors table in the database.

6. Open the DataBindings category, click the Text property, and then click the drop-down arrow.

The Properties window displays a list of data sources that you can bind to the text box. If you’ve completed the previous exercises, you’ll see a dataset object named DsInstructors1 in the drop-down list box.

7. Click the plus sign (+) to expand the DsInstructors1 dataset, and then expand the Instructors table beneath it.

You’ll see the following database structure in the Properties window:

[image: image2.png][Etinstracto 2ten Vindavs arne Tevteex

[E2] 4 [m]

(DynamicProperties)
& bats
B (DataBindings)
{Advanced)
Tag (Mone)
I -

Tag 50 Detntructorst
& besin B s
o) B etr

Locked 5] InstructorlD

odiers X

B Focus
it T Bl

Ll i

Text

[ropeties| @ oyraric e |

As you might recall, Instructors is the name of a table in the Students.mdb database, and Instructor is a field within the table containing the names of teachers that work at a hypothetical college.

8. Click the Instructor field to select it as the field that will be displayed in the txtInstructor text box. Be sure to click the “Instructor” text and not the icon; otherwise, the Instructor field won’t be selected.

The dataset, table, and field names appear in the Text property setting of the Properties window. Now you’re ready to write the program code that loads data into the dataset and displays it in the text box object.

9. Restore the Properties window, double-click the Load Data button, and then type the following program code in the btnLoad_Click event procedure of the Code Editor:

DsInstructors1.Clear()

OleDbDataAdapter1.Fill(DsInstructors1)

You must manually fill the data adapter with data by using the Fill method, which subsequently loads, or populates, the bound text box object on your form with information from the dataset you defined earlier. Although this might feel like an extra step, it’s accomplished easily with two lines of program code. In this context, the Clear method is necessary so that records returned by subsequent queries to the database aren’t appended to the dataset. Using ADO.NET does sometimes require additional steps that weren’t needed in ADO and Visual Basic.

TIP
For demonstration purposes, I’ve placed these two lines into a button event procedure, but you could just as easily place them in the Form1_Load event procedure so that the text box object is populated when the opening form is displayed.

10. Click the Start button to run the ADO Form program.

The ADO Form program runs in the development environment. Note that there’s currently no instructor name in the text box.

11. Click the Load Data button.

After a moment, the name “Delamarco, Stefan” appears in the text box, as shown in the following illustration. This is the first instructor name in the Students database.

[image: image3.png]~=lolx|

Instuctor [Delamarco, Stefen

LoadData

12. Click the Close button on the form to stop the program.

You’ve successfully displayed an instructor name from the Students database. Now it’s time to add some more sophisticated features to your database front end.

At this point you should review what you have achieved. This is slow work first time through, but when you get familiar with the process, it is very powerful. I think you will see this after some practice.
Creating Navigation Controls

Right now, the ADO Form program displays the first instructor name in the Students.mdb database. But how do you browse through the list of instructor names, and how do you make jumps to the first record or the last record in the database? ADO.NET keeps track of information about the current record and the total number of records by using an object named the CurrencyManager. There’s a CurrencyManager object for each dataset, and each Windows Form has a BindingContext object that keeps track of all the CurrencyManager objects on the form.

In the following exercise, you’ll create button objects named First, Last, Prev, and Next in the ADO Form program that provide basic database navigation features for the user. After you create these buttons on your form, you’ll add program code to each button’s Click event procedure that displays a different database record by using the BindingContext object, the DsInstructors1 dataset, and the Instructors table. You can also customize this program code to fit your own needs by substituting my dataset and table names with parameters from your own database structure.

Add First, Last, Prev, and Next buttons

1. Display the ADO Form user interface, and then use the Button control to create four button objects on your form.

Add two button objects in the middle of the form and two at the bottom of the form.

2. Set the following properties for the button objects:

	Object
	Property
	Setting

	Button1
	Name

Text
	btnFirst

“First”

	Button2
	Name

Text
	btnLast

“Last”

	Button3
	Name

Text
	btnPrev

“Prev”

	Button4
	Name

Text
	btnNext

“Next”

Your form should look like this:

[image: image4.png]Start Page | Form1.vb [Design]* | Formt vt |

loix|

Istuctor [

Fit Last
LoadData Fev fD New

Now you’ll add the program code that enables the navigation functionality of the buttons.

3. Double-click the First button.

The btnFirst_Click event procedure appears in the Code Editor.

4. Type the following program code:

Me.BindingContext(DsInstructors1, "Instructors").Position = 0

This is the syntax for using the BindingContext object to display the first record in the DsInstructors1 dataset of the Instructors table. The program statement sets the Position property to 0, which changes the current record in the dataset to the first record. (Like arrays and collections, datasets start their numbering at the 0 position.) Also note the use of the Me object, which specifically identifies the BindingContext object for the current form.

5. Display the form, and then double-click the Last button.

The btnLast_Click event procedure appears in the Code Editor.

6. Type the following program code:

Me.BindingContext(DsInstructors1, "Instructors").Position = _

 Me.BindingContext(DsInstructors1, "Instructors").Count - 1

This long statement (broken into two lines) causes the last record in the dataset to be displayed on the form. It’s a variation of the BindingContext statement that precedes it, but rather than setting the Position property to 0, this statement sets the current record to the value held in the Count property minus 1. Count is the total number of records in the dataset. One is subtracted because the dataset is zero-based.

7. Display the form, and then double-click the Prev button.

The btnPrev_Click event procedure appears in the Code Editor.

8. Type the following program code:

Me.BindingContext(DsInstructors1, "Instructors").Position -= 1

This statement displays the previous record in the dataset by subtracting 1 from the current record. Although this statement won’t have meaning if the current record is already 0, it won’t create a syntax error—ADO.NET won’t let the current record be a number less than zero. Note the use of the -= syntax in this statement to decrement the Position property. This is the math shortcut syntax for decrementing variables.

9. Display the form, and then double-click the Next button.

The btnNext_Click event procedure appears in the Code Editor.

10. Type the following program code:

Me.BindingContext(DsInstructors1, "Instructors").Position += 1

This statement increments the Position property to display the next record in the dataset. Notice the use of the the math shortcut operator += here to update the Position property using a minimum of program code.

Now you’ll run the updated program, and test the navigation buttons you just configured.

11. Click the Start button on the Standard toolbar.

The program runs in the development environment.

12. Click the Load Data button to populate the text box on the form with the first instructor name in the dataset.

13. Click the Next button to display the next database record.

Your form will look like this:

[image: image5.png]EETE ool

Instuctor[MicKay, vvorne

Fit Last

LoadData Prev Nest

The Next button displays
the next instructor name

14. Click the Prev button to display the first record again.

15. Click the Next button several times to browse through several instructor names in the list.

16. Click the First button to display the first record in the dataset.

17. Click the Last button to display the last record in the dataset.

Notice that the program doesn’t produce an error if you display the last record and then click Next. In addition, the program doesn’t produce an error if you display the first record and then click Prev. This error handling is built into the BindingContext object.

18. Click the Close button on the form to stop the program.

One Step Further: Displaying the Current Record Position

In addition to providing basic navigation tools on your form, you might want to provide some indication of the current record number on the form, along with the total number of records in the dataset. You can accomplish this by creating a label object on the form to display the current position. The current position count is held in the Position property of the BindingContext object, as you’ve already learned. If you want to update the current position when each of the navigation buttons is used, you should create a procedure at the top of the form’s program code to determine the current position and display it on the form.

In the following exercise, you’ll create a Sub procedure named Count that declares two variables to track the total number of records and the current record and then displays this information by using the Text property of a new label named lblCount.

Create a Count procedure to display current record statistics

1. Display the form, and then use the Label control to draw a wide label object directly below the text box object.

2. Set the Name property of the label object to lblCount.

3. Set the Text property of the label object to “Record 0 of 0”.

4. Click the View Code button in Solution Explorer to display the Code Editor.

5. Scroll to the top of the Code Editor, and place the cursor below the tag “Windows Form Designer generated code”.

By placing procedures in the Form class, the procedure can be accessed from anywhere within the form.

6. Type the following program code for the Count Sub procedure. (Note that Visual Basic adds the End Sub statement automatically.)

Private Sub Count()

 Dim Records, Current As Integer

 Records = Me.BindingContext(_

 DsInstructors1, "Instructors").Count

 Current = Me.BindingContext(_

 DsInstructors1, "Instructors").Position + 1

 lblCount.Text = "Record " & Current.ToString & " of " & _

 Records.ToString

End Sub

The Count procedure assigns the value of the Count property to the Records integer variable, and it assigns the value of the Position property plus 1 to the Current integer variable. 1 is added to the Position property because the list of records is zero-based (like arrays and collections)—an interesting detail for programmers, but not something that the user should see. Finally, the Records and Current variables are converted to strings and copied to the Text property of the lblCount object along with some formatting information so that the label will appear in the following format: Record x of y, where x is the value of the Current variable, and y is the value of the Records variable.

Now you need to add a call to the Count procedure to each of the five button event procedures in the ADO Form program. This is important because each button performs a navigation activity, so the label needs to be updated appropriately each time that the Position property changes.

7. Scroll down to the btnFirst_Click event procedure, add a blank line to the procedure at the bottom, and type the following procedure call:

Count()

Your event procedure should now look like this (although the first line doesn’t need to be broken):

Private Sub btnFirst_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnFirst.Click

 Me.BindingContext(DsInstructors1, "Instructors").Position = 0

 Count()

End Sub

8. Repeat this step by adding a call to the Count procedure in each of the following event procedures in your program: btnLast_Click, btnPrev_Click, btnNext_Click, and btnLoad_Click.

That’s it! Now you’re ready to run the program and see how the current record statistics work.

9. Click the Start button to run the program.

10. Click the Load Data button.The form is populated with data, and the first instructor name appears. In addition, the text “Record 1 of 9” appears below the text box in the
new label you created. Your forrm should look like this:
[image: image6.png]~=lolx|

nstuctor [Delamarco, Stefan

LoadData

Record 109
Fit Last
Prev Nest

11. Click the Next button several times to see the current record statistics change as you scroll through the instructor records in the dataset.

12. Click the Prev, First, and Last buttons to verify that the Count procedure works for those navigation buttons, too.

13. Click the Close button on the program’s title bar to stop the ADO Form application.

That’s it! You’ve written your first database front end with Visual Basic and ADO.NET. Although you used a Microsoft Access database in this example, you’ll find that the basic data access techniques are very similar for other types of database information, including SQL Server databases and databases stored at remote locations, such as network servers or the Internet. The reason for this similarity is the distributed architecture of ADO.NET, which uses a similar mechanism for establishing connections, configuring data adapters, and creating datasets based on diverse data resources.

Although it takes several steps to establish the basic connections and settings in an ADO.NET session, the advantage of this upfront work is that manipulating database information on a form is a very uniform process. This is the case even when the data you’re using has come from a remote setting or is the result of combining different database tables or data formats. In the next tutorial, you’ll continue working with database information by exploring how to use the DataGrid control to work with several database records at once.

Data Access in a Web Forms Environment

The data access techniques discussed in this chapter were designed for use in a Windows Forms environment—the fundamental Visual Studio designer you’ve used to build most of the programs in this course. However, you can also use ADO.NET programming techniques in a Web Forms environment, which allows you to share data resources over the Internet and write database front ends that are accessible through a Web browser such as Internet Explorer. The major differences between the Windows Forms environment and the Web Forms environment are covered in the text. For additional information about writing database applications in a Web Forms environment, see “Introduction to Data Access in Web Forms Pages” in the Visual Basic online Help.

PAGE
1

