Deploying Visual Basic .NET Applications
(Adapted from the original work by Michael Halverson)

· Do Try This At Home.... This tutorial is best implemented on a system running Windows XP Professional with the user logged in as Administrator. It is also easier (although not essential) if you are running Visual Studio 2003 Professional (or better).

Provided you are careful with path-names, and use folders to which you have appropriate read/write privileges, most of the example given here can be done in the labs. However, unless they have temporarily lost their senses, it is likely that the laboratory managers will have ensured that you do not have permission to update the registry or to access the control panel, and so installing and uninstalling the program may be a problem. You should however be able to adapt what you learn from this tutorial to create a deployable via a CD-RW and then install and uninstall the application on a computer on which you have appropriate access privileges.
In this tutorial, you will learn how to:

· Add a deployment project to your solution.

· Run the Setup Wizard to create a setup program for your application.

· Customize your setup program by using properties and build settings.

· Test installing and uninstalling your application.

When your Microsoft Visual Basic.NET application is finished, you might want to distribute it to other computer users in your workgroup, share it with friends on the Internet, or sell it to paying customers. Microsoft Visual Studio .NET helps you distribute your Visual Basic applications by providing several options for deployment—that is, installing the application on one or more computer systems. In this chapter, you’ll learn how to deploy Visual Basic applications by adding a deployment project to your solution, and you’ll run the Setup Wizard to create the installation files that you need. In addition, you’ll learn how to customize your installation by using property settings and adjusting the deployment options in your build configuration.

Building a deployment project is a complex process, and you’ll find that each edition of Visual Basic .NET offers a slightly different assortment of installation options. For example, Visual Basic .NET Standard doesn’t include the Setup Wizard to automate a typical deployment. Visual Studio .NET Professional and advanced editions contain additional installation templates plus the ability to deploy solutions on the Web and create cabinet files. As you work through this chapter, you might see a few settings or options that aren’t available in your edition of Visual Basic .NET.

Planning a Deployment

In the early days of personal computer programming, creating an application that could be installed successfully on another computer was often as simple as compiling an .exe file for your project and copying it to a floppy disk. As application programs have become more sophisticated, however, the number of files needed for a typical installation has grown from a handful of files to several hundred or more. Although the Microsoft Windows operating system has helped to reduce the overall scope of application development (by providing common application services such as printing, Clipboard functionality, memory management, and user interface support), Windows applications have historically required sophisticated setup programs to copy the correct dynamic-link libraries (DLLs) and support files to the host computer and to register the application appropriately with the operating system.

At one time or another, most computer users have experienced the “dark side” of installing Windows programs—an application is successfully installed but it won’t run, or the new program creates a DLL conflict with another program that was running fine until the new one came along. An equally irritating problem is the newly installed program that can’t be uninstalled, either because the uninstall program no longer works or because the uninstall process leaves DLLs, registry entries, and other support files scattered throughout the file system. These shortcomings—known as “DLL Hell” by some of the more tortured users and developers—are a major limitation of COM components and traditional setup programs, including (potentially) those created by the Visual Basic 6 programming system.

Visual Studio .NET was designed, in part, to address the installation shortcomings of Visual Basic and Microsoft Visual C++ applications, especially those that rely on COM components. In Visual Studio .NET, it’s possible to simplify the installation process because Visual Studio applications rely on .NET Framework class libraries for much of their functionality instead of on COM components and numerous function calls to the Windows API (application programming interface). In addition, Visual Studio applications are compiled as assemblies, deployment units consisting of one or more files necessary for the program to run.

Assemblies contain four elements: Microsoft intermediate language (MSIL) code, metadata, a manifest, and supporting files and resources. MSIL code is your program code compiled into a language that the common language run​time understands. Metadata is information about the types, methods, and other elements defined and referenced in your code. A manifest includes name and version information, a list of files in the assembly, security information, and other information about the assembly. The following illustration shows a diagram of a single file assembly we’ll look at in this chapter:

Assemblies are so comprehensive and self-describing that Visual Studio .NET applications don’t need to be formally registered with the operating system to run. This means that a Visual Basic .NET application can be installed by simply copying the assembly for an application to a new computer that has the .NET Framework installed—a process called XCOPY installation, after the MS-DOS XCOPY command that copies a complete directory (folder) structure from one location to another. In practice, however, it isn’t practical to deploy Visual Basic .NET applications by using a simple copy procedure such as XCOPY (via the command prompt) or Windows Explorer. For commercial applications, an installation program with a graphical user interface is usually preferred, and it’s often desirable to register the program with the operating system so that it can be uninstalled later by using Add/Remove Programs in Control Panel. The flexibility of installed Visual Basic .NET applications is impressive. For example, Visual Basic .NET versions 2002 and 2003 can be installed side by side on a single computer (each with its own version of the .NET Framework), and each version runs independently without conflict.

To manage the installation process, Visual Studio .NET allows developers to add a deployment project to their solutions, which automatically creates a setup program for the application. This deployment project can be customized to allow for different methods of installation, such as CD-ROMs and Web servers. Best of all, you can add a deployment project to your solution at any time during the development process—at the beginning, when you’re just defining your solution; at the end, when you’re ready to distribute your solution; or in the middle, when you’re having difficulty with some code and want to do something else for a few hours.

Different Ways to Deploy an Application

As you think about distributing your solution, consider the different methods that you can use to deploy your application. You can

· Install the application on your own computer and register it in the Windows system registry.

· Create an installation program that allows your application to be installed from a local network or from the Internet.

· Deploy your application using one or more CD-ROMs.

· Deploy your application using cabinet files (.cab), a technique that can be used to download files by using a Web browser.

In Visual Studio, you can quickly create a deployment project by running the Setup Wizard. You can customize the deployment project by setting various properties. If you deploy by using CD-ROMs, your computer will need a writable CD-ROM drive, often called a CD burner, and you’ll need to copy the deployment files to the CD-ROMs. The .NET Framework is required on each system that runs Visual Basic .NET applications. The .NET Framework is available as a single redistributable file (Dotnetfx.exe) on the Visual Studio .NET Windows Component Update CD-ROM. In Visual Basic .NET 2003, a compact version of the .NET Framework is available for use with mobile computing devices. The .NET Framework will also be available as a download from the Microsoft Web site. The default Dotnetfx.exe is quite large (more than 20 MB), and when installed, the standard .NET Framework is approximately 30 MB. However, Microsoft has committed to distributing the .NET Framework along with Windows Server 2003 and future operating systems. If the target computer already has the .NET Framework installed, you could just copy the application and any required files to the computer, and the application should run properly. However, to create a complete setup program, the deployment files must include the .NET Framework redistributable.

NOTE
Some of the deployment files that Visual Studio creates are too large to fit on floppy disks. It’s possible to partition a large Windows installer file into smaller cabinet files, but some of the supporting files are still too large. If you’re interested in deploying to floppy disks, you should create a test deployment project to verify that the deployment files will fit on 1.4 MB floppy disks. Realistically it is best to accept that floppy-discs are now history, and forget about them.
Creating a Deployment Project

Now let’s get some practice creating an actual deployment project and setup program for a Visual Basic application you’ve created in this book. The setup program you create will be designed for deployment on your own system, and you should ensure that you have the application and its Readme file installed in the c:\program files\lucky seven folder. The setup program will add an application shortcut to the user’s Programs list on the Start menu. In addition, the setup program will register the Lucky Seven application in the Windows system registry, and at the end of the chapter, you’ll see how Add/Remove Programs in Control Panel can uninstall this application. This deployment can also be copied to a CD-ROM and used for CD installation.

IMPORTANT
The following steps use the Setup Wizard in the Setup and Deployment Projects folder of the New Project dialog box. If your edition of Visual Basic .NET doesn’t include the Setup Wizard, you won’t be able to perform these steps. You can, however, use the Setup Project template instead to create a deployment project manually. Information on how to create a deployment project by using the Setup Project template is available on the MS Visual Studio support web site.

Create a deployment project by using the Setup Wizard

1. Start Visual Studio, and open the Lucky Seven (or Spin-and-Win) project in the c:\program files\lucky seven folder.(or wherever you created the application in week 1.)

The Lucky Seven (we may have called it Spin-and-Win) solution was created in the first practical session. It’s a slot machine game that displays a bitmap if the number 7 appears one or more times on the form when you click the Spin button.

2. On the File menu, click New, and then click Project.

Visual Studio opens the New Project dialog box.

Now you’ll add a deployment project to the solution that will automatically create a setup program for this application. Although most of the solutions you’ve created in this book have contained only one project, solutions that include a setup program have a minimum of two projects. (As you’ll see, you use Solution Explorer to manage these projects.)

3. Click the Setup and Deployment Projects folder.

This option presents four templates and a wizard that you can use to create the deployment project. The New Project dialog box will look like this:
[image: image2.png]New Project

Project Types:

Templotes:

Viual Basic Projects
Visual C# Projects

Visual 3 Projects

Setup Project Wb Setup

-0 visual C++ Projects Project

% (11 Other Projects

Setup Wizard Cab Project

Create a Windows Installe project to which fles can be added

Neme:
Location;

€ addto Solution

&)

Mergs Modue
Project

Setupt

Drivisual Basic CourselDatal

Browse,

& Close solution

Project wil be created at D:\Visual Basic CourselDatatisetupt

o

E3

1. The four templates are designed to configure many of the settings in the deployment project for you. The Cab Project template configures the deployment project to create one or more cabinet files for the project. (You determine the size of the files.) Choose this option if you want to have users download the solution from the Internet (recommended for older browsers that can’t accommodate a full Web setup). The Merge Module Project template is designed to create a general-purpose deployment project that can be used for several different Visual Basic applications. (It creates a .msm file that can be merged into other solutions.) The Setup Project template creates a setup program that uses the Windows Installer for installation. The Web Setup Project creates a setup program that uses the Windows Installer and a Web server for installation over the Internet.

Perhaps the most useful item in the Templates pane of the New Project dialog box is the Setup Wizard, which is a wizard that builds a deployment project based on how you answer several questions about installation media, Web preferences, and so on. You can use the Setup Wizard to create a cabinet project, a merge module project, a Windows Installer project, or a Windows Installer project for the Web.

TIP
If you click the More button in the New Project dialog box, you can also specify a separate name and folder for the solution you’re creating. This isn’t required, but it is a useful way to isolate the deployment files that you’re creating.

2. Click the Setup Wizard icon.

3. Type Lucky in the Name text box, and specify c:\program files\lucky seven in the Location text box.

4. Click the Add To Solution option button, and then click OK.

The Add To Solution option button is important here—if you don’t click it, Visual Studio will close the Lucky Seven solution before it opens the deployment project, and you’ll miss the benefits of combining the application with the setup files.

When you click OK, Visual Studio starts the Setup Wizard, which you’ll complete in the following exercise.

Run the Setup Wizard
1. Read the first dialog box displayed by the Setup Wizard. Your screen will look like this:-t

[image: image3.png]Setup Wizard (1 of

Welcome to the Setup Project
Wizard

This wizerd wil lead you thraugh the steps of creating
a setup project

A setup project creates an instaler for yaur
applcation,

The project that s created can be used immediately or
Further customized to add exira Features not cavered
by this wizard

Click et to create a new sstup project, or Cancel to
extt the wizard,

Cancel <Beck. Erish

1. The purpose of the Setup Wizard is to customize the new deployment project and create an installation program for your solution. The Setup Wizard cannot control every installation feature, but it configures a basic deployment project that can be used in a variety of different contexts.

2. Click Next to display the Choose A Project Type dialog box.

Your screen will look like this:

[image: image4.png]Setup Wizard (2 of 5)

Choose a project type
The type of project determines where and how fies wil be nstalled on a
target computer.

€ Create a setup for a web application

 Create a merge module for Windows Installer
€ Create a downloadable CAB file

1. The Choose A Project Type dialog box lets you control how your solution will be distributed. The options map closely to the deployment templates you saw earlier in the New Project dialog box. In this exercise, you’ll accept the default deployment type—Create A Setup For A Windows Application.

2. Click Next to display the Choose Project Outputs To Include dialog box.

You use this dialog box to identify the files that you want to include on the systems that will run your application. The Primary Output option is usually mandatory—by selecting it, you include the .exe file for your project or .dll if you’re creating a dynamic-link library. The other options allow you to include information that might be useful in internationally deployed applications (Localized Resources) and in programs that might require further debugging (Debug Symbols) or development work (Content Files/Source Files).

3. Click the Primary Output option.

Your screen will look like this:

[image: image5.png]Setup Wizard (3 of 5)

Choose project outputs to include
ou can includ outputs rom ofher pojects n your soluton

‘Which project output groups do you want to include?

B Primar:
Lacalzed resaurces from Lucky Seven
Debug Symbols from Lucky Seven
Content Fis from Lucky Seven
Saurce Files from Lucky Seven

Descripton

Contains the DLL or EXE bult by the project

1. Click Next to display the Choose Files To Include dialog box.

In this dialog box, you pick additional files that you want to include with your deployment project, such as a Readme.txt file, troubleshooting tips, marketing information, and so on.

2. Click the Add button to add a Readme.txt file to this solution.

Make sure you have a simple ReadMe.txt file in the source folder. This will be the instructions file for your eventual users.

3. Browse to the c:\program files\lucky7 folder, select the Readme.txt file, and then click Open.

Your screen will look like this:

[image: image6.png]Lucky Seven - Microsoft Visual Basit

He E Yew Dot B Dohip Dok Wedow Heb
-a-SE@| L he oo -5 o
DT

G ACCESS.U Public

B servers

Setup Wizard (4 of 5)

Choose files to include
Vou can add Fles such as ReadHte Fes or HTML pages to the setup.

‘Which additional fles do you want to include?

) 3

Task List - 0 Buld Errr tasks shown (fitered)
1] [l Description
Click here to add a ne task.

= @ Dsta Comnectons 163 Soluion Lucky Severt (1 profect)

T Lucky Seven
) References
9 assanblyinfo.sb
Formt b
) vodule. b

1. Click the Next button to display the Create Project dialog box.

A summary of your deployment selections is listed, as shown here:

[image: image7.png]Setup Wizard (5 of 5)

Create Project
The wird wil now create a project based on your choces

Summry:

Project type: Create a setup for a Windows application

Project groups to nclude:
Primary output from Lucky Seven

‘addtional les
Cilvbretn3sbsichapt 4|Readme. txt

Project Directory: C:ivbnet03sbsichapt #iLucky|Lucky.vdproj

1. If you want to change any selections you’ve made, click the Back button and make your adjustments, and then click Next until this dialog box is visible again.

2. Click Finish to create the deployment project for the Lucky Seven application.

Visual Studio adds a deployment project named Lucky to the solution, and it appears as another component in Solution Explorer. The File System Editor also appears, as shown here:

[image: image8.png]Lucky - Microsoft Development Environment [design] - File System (Lucky)

Ble Edt Vew Projct Buld Debug

window

Help

B-a-cWd@| bR o-«-8-B

» Debug -

Server Explorer 2 X File System (Lucky) |

(2 e System on Target achine

Qs Name
= 3 Data Connections 51 Applcation Folder 6Application Folder
3 ACcEsm pubicm | 60 UsesDeskin Slersoosiop Folr
T Servers &3 User's rograms Menu &user's Programs Menu Folder
<1) >
Tade ik - Bk Ero e sown (tered)
i v/ Description File Line.

Click here to add a ne task.

53 Soluton Lucky Seven' (2 projects)

e @

Lucky Seven
) References

9 assanblyinfo.sb
Formt b

9 vodul. b

{23 Detected Dependencies

o detnetftedst_é6.msm
{E] Primary output From Lucky Seven (Active)
3 Readne.t

1. You use the File System Editor to add project output, files, and other items to a deployment project and to determine where they’ll be placed on the computer receiving the installation. The File System Editor displays a standard set of folders that correspond to the standard folder structure on the setup computer. You can customize this folder list and add special folders if you want. You can also create application shortcuts by using the File System Editor.

Take a moment to examine the contents of the Lucky deployment project in Solution Explorer. You’ll see the .NET Framework dependency in the Detected Dependencies folder, a placeholder for the .exe file (called Primary Output), and the Readme.txt file you included.

1. TIP
Although the .NET Framework is listed as a dependency, you can’t include it within the installation files. If you try to include the .NET Framework by changing the Exclude property for the dependency to False, an error will be displayed when you build the solution. Earlier betas of Visual Studio .NET 2002 did allow you to include the .NET Framework. This change was made because including the .NET Framework within the installation files doesn’t allow the .NET Framework to be separately updated when fixes and new versions are released. Visual Studio .NET 2003 doesn’t allow you to include the .NET Framework component in your application installation, either—your user must install the .NET Framework first, before he or she installs an application built by Visual Basic .NET.

Customizing Your Deployment Options

Your deployment project is basically ready to go now—the next time that you build your solution, the necessary setup program will be generated in the c:\vbnet03sbs\chap14\lucky folder and stored in an .msi (Windows Installer) file, which you can use to deploy your application. However, there are still a few customization options that you might want to set to fine-tune your program deployment. In this section, I’ll discuss how you use the Configuration Manager to modify your build settings, how to create a shortcut to your application, and how you can change useful property settings, such as the company name and version information your setup program displays.

Configure build settings

1. Click the Configuration Manager command on the Build menu.

You’ll see this dialog box:

[image: image9.png]Configuration Manager

Active Solution Configuration

Broject Contexts (check the project configurations to buld or deploy):

Project

Configuration

Platform

Lucky

Lucky Seven

Debug
Debug

The Configuration Manager dialog box shows the current build mode for the projects in your solution. The Lucky Seven project and the Lucky deployment project are probably set to debug build, meaning that the compiler will generate files containing additional information for debugging and testing. When you’re preparing your final projects for distribution, it’s important to use the Configuration Manager dialog box to set all projects for release build.

2. Click the Active Solution Configuration drop-down list box, and then select Release.

[image: image10.png]Configuration Manager

Active Solution Configuration

o buld or deploy):

Platform

Lucky Seven

3. Click the Configuration option for the Lucky project, and then click Release.

4. Click the Configuration option for the Lucky Seven project, and then click Release.

The Configuration Manager now shows that both projects are set for release builds. If you need to switch back to a debug build later, you should be able to just select Debug in the Active Solution Configuration drop-down list box.

5. Add check marks to the Build check boxes for both the Lucky project and the Lucky Seven project.

[image: image11.png]Configuration Manager

Active Solution Configuration

Release

Project

Broject Contexts (check the project configurations to buld or deploy):

Lucky

Configuration

Platform

Lucky Seven

Release

Release

TIP
If you remove the check mark from the Build check box in Configuration Manager, Visual Studio won’t compile that project when either the Build Solution command on the Build menu or the Start command on the Debug menu is selected. Although you won’t want to remove the check mark for your final builds, removing it can be useful while you work on a solution because building the deployment project can be time consuming, and the check mark isn’t necessary if you’re just working on the application project.

6. Click the Close button.

Next you’ll use the File System Editor to create a shortcut to the Lucky Seven application so that users can easily start it.

Create an application shortcut

1. Select the Application Folder in the left pane of the File System Editor.

TIP
If the File System Editor isn’t visible, you can open it by first selecting the Lucky deployment project in Solution Explorer. Next click the View menu, click Editor, and then click File System.

2. In the right pane, right click Primary Output From Lucky Seven, and then select Create Shortcut To Primary Output From Lucky Seven.

[image: image12.png]Lucky - Microsoft Development Environment [design] - File System (Lucky)

Ble Edt Vew Projct Buld Debug Took Acion Window Help

- REERFE-,

B-a- W@ 4 BR|o-c-8-B| ek C @
Server Explrer 2 x| File system (tucky) | < x|
BEE [Fie System on Taroet adine Tipe g2
= 9 Data Comnections 3 applcatin Foder Shortut o rimary 0. Shortet =
@ ACCESS.Lipublc e | 6 Users Desktep % primery utput Fron .. RORTY 2
2 soves 53 ers Prograns e Readne ot e Z
<1) >
Task st -0 Buld Eror tasks show (ere) 2 x
i v Description File. Line
Clekhere to add anew tadk
B oup |
Ready

Note that when you have selected ‘Primary output from lucky..., you may have to right-click the mouse to get to see the drop-down menu with the ‘Create Shortcut option etc. It depends on the detail of your particular system configuration. (This is a Microsoft characteristic with which you must learn to live....!)

A shortcut icon appears with its name selected so that it can be renamed.

3. Rename the shortcut Lucky Seven, and then press Enter.

4. Drag the Lucky Seven shortcut into the User’s Programs Menu folder in the left pane.

The contents of the User’s Programs Menu folder will look like this:

[image: image13.png]Lucky - Microsoft Development Environment [design] - File System (Lucky)
action Window Help

Ble Edt Vew Projct Buld Debug ook

- REERFE-,

B-a- W@ fBR|(o-c-8-B)rdkse C @
R 5 x| File system (Lucky) | T x|
R B Fie System on Target Machine e g
= @ Data Connections 53 Applcation Folder Lucky Seven Shortcut g
B ACCESS.L:\Public. vy 63 user'sDeskop o
B sorvers = g
Ealls >
“Task st - 0 Buld Evrortasks shown (ierec) 2 x
i v Description File. Line
Clckhere to add a new task
B ounr |
Ready

When this application is installed, a shortcut will be added to the user’s Programs menu, which can be accessed from the Start button on the Windows taskbar.

Now you’ll set the company name and version information for your setup program.

Set company name and version information

1. Select the Lucky deployment project in Solution Explorer.

2. Open the Properties window, and enlarge it so that it’s big enough to show several of the deployment project properties and settings.

The Lucky deployment project properties fill the Properties window because Lucky is the project that’s currently selected in Solution Explorer. The properties aren’t related to visible objects in the project but rather are optional settings related to how the application is installed on a new computer. The Author and Manufacturer properties are usually set to the name of the company producing the software, and this value is also used to construct the default path for your program on disk. (For an example of this pattern, see the c:\program files folder.) Once the application is installed, the Author property is also displayed in the Contact field of the Support Info dialog box, which you can access for individual applications through Add/Remove Programs in Control Panel.

The Title property contains the name of the setup program, and the Version property allows you to specify version information for your setup program. A few properties, such as Product Code and Package Code, contain unique alphanumeric codes generated by Visual Studio that you can use to identify individual releases of your setup program. (Note that these property settings apply to the setup program and not the Lucky Seven application.)

3. Change the Author and Manufacturer properties to Acme Company by using the Properties window.

4. Change the Version property to 1.2.0 by using the Properties window.

When you change the Version property and press Enter, Visual Studio displays a dialog box asking whether you want to generate new ProductCode and PackageCode numbers.

5. Click Yes to create new code numbers.

6. Spend a few moments examining the remaining property settings, and then return the Properties window to its normal size.

Now you’ll open the Property Pages dialog box to see where the media-related property settings are located.

Set deployment property pages

1. Select the Lucky deployment project in Solution Explorer.

2. Click the Properties command on the Project menu.

The Property Pages dialog box opens for the Lucky deployment project, as shown here:

[image: image14.png]Lucky Property Pages

Configuration: [Active(Release) pltform; [N figuration Hanager.

22 Configuration Properties E
& Buld Output il pame: ReleaselLucky.msi B

Package fles nsetup fle Sl

Bootstrapper: [Windows Instaler Bootstrapper v| Sciii

Compression; [Optinized for size: =

Cap sze
& wrlirited
€ custom

I~ Fbentceds sanatrs)

Certicate fie Browse,

Prigate ey Fe Brovse,

Tiestarmp server URL:

Cancel Aoy Help

This dialog box gives you an opportunity to rethink a few of the decisions you made in the Setup Wizard (if you used the Setup Wizard) and to customize a few additional settings that weren’t available in the wizard. I’ll walk you through several of the settings in this dialog box now.

The Output File Name setting controls the name of the file your installation files are packaged into. This is usually one large file with an extension of .msi (Windows Installer) and a few supporting files, such as Setup.ini and Setup.exe. These supporting files are added based on additional deployment project options that will be discussed. The users installing your program can launch the .msi file directly or through a Setup.exe program. When they do so, the installation process copies the .exe application file and any associated files to the default folder for the application.

3. Click the Package Files drop-down list box.

This list box contains three options: As Loose Uncompressed Files, In Setup File, and In Cabinet File(s). In Setup File is currently selected because that’s the option you selected when you ran the Setup Wizard earlier; this option creates one large .msi file in the specified folder. The As Loose Uncompressed Files option will create uncompressed files in the same folder as the .msi file. The In Cabinet File(s) option creates one or more .cab files to hold the application and places them in the same folder as the .msi file.

4. Select the In Cabinet File(s) option.

When you select this option, the CAB Size options become available. If you click the Custom option button, you can specify the maximum size of each cabinet file in the Custom text box.

5. Click the Package Files drop-down list box again, and then select In Setup File.

In this exercise, you’ll create a single installation file that contains all the support files you need.

6. Click the Bootstrapper drop-down list box.

The Bootstrapper list box determines whether a bootstrapping program will be included in the setup program you’re creating. A bootstrapping program includes the files needed to install Microsoft Windows Installer 2.0 on the target computer if it isn’t already installed. This version of the installer is the default version included with Visual Studio .NET, Microsoft Windows XP, and Microsoft Windows Server 2003, but in case your users don’t have one of these products, it’s a good idea to include the bootstrapping programs along with your application. In the list box, you can choose a Windows-based or Web-based bootstrapping program. If you select Web Bootstrapper, the Web Bootstrapper Settings dialog box appears, in which you can specify the Web location for the bootstrapping files.

7. Click the Windows Installer Bootstrapper option.

8. Click the Compression drop-down list box.

The options in this list describe how your files will be packaged in the setup program. Optimized For Size is the most common option for developers who are trying to squeeze their installations into cabinet files. Optimized For Speed is the best choice if you have plenty of media space (in other words, a CD-ROM) but you want things to move along as quickly as possible.

9. Click the Optimized For Size option.

You’ll try to minimize the size of your single installation file because the file will remain on your own system during the installation tests.

The final option in the Property Pages dialog box relates to the inclusion of an Authenticode Signature in your project. An Authenticode Signature is a digital document (an .spc file) that identifies you as the manufacturer of this software product. Such a file verifies that you’re a “reputable” software vendor and are trustworthy to the extent that you can be located down the road if problems occur with your application. Although the creation and use of Authenticode Signatures are beyond the scope of this tutorial—so don’t enable it—this is an option you should investigate if you’re planning a commercial release of your Visual Basic application. An Authenticode Signature allows your program to register as a “trusted source” in the end user’s operating system. (Check the box to see the options, but un-check it again before proceeding).
10. Click OK to save your changes in the Property Pages dialog box.

Visual Studio records your selections and is ready to compile the projects.

Building a Deployment Project and Testing Setup

When you’re finished adding and customizing your deployment project, you’re ready to build the solution and test the setup program. Here are the steps you should follow:

1. Build the solution by using the Build Solution command on the Build menu.

This command will compile the entire solution, including the final version of the application and the deployment project you’ve included in the solution.

2. Run the setup program to install the application.

Test the setup program and the installation process. In this exercise, you’ll launch the setup program by double-clicking the Setup.exe file you build.

3. Test the installation and examine the installed files.

Verify that the installed application works and that the expected files (such as Readme.txt) were installed in the proper folder.

The following exercises demonstrate this process for the Lucky Seven application and the Lucky deployment project.

Build the project

1. Click Build Solution on the Build menu.

Visual Studio compiles both the Lucky Seven and the Lucky projects and creates an .msi file in the c:\program files\lucky\release folder. The build process takes longer than normal because Visual Studio must package files required to deploy your application.

During longer compilations, a progress bar and a repeating compilation pattern are displayed on the Visual Studio status bar, indicating that the build process is under way. Staring at this box can be soothing.

[image: image15]
If the compilation finishes with no errors, the words “Build Succeeded” appear on the left side of the status bar.

2. Click the Start button on the taskbar, click Programs, click Accessories, and then click Windows Explorer.

You’ll use Windows Explorer to locate and identify the files that were created during the build process.

3. Browse to the c:\program files\lucky\release folder, and then click the Lucky.msi file once to select it.

You’ll see the following list of files:

[image: image16.png]Release

Ele Edt View Favortes Toos Help

O - © - (B Do i ros |-

address | Cilvbnetnisbsichapl 4iLuckylRelease

Lucky Setup
File and Folder Tasks.). Windows Installer Package Micrasoft (R) Visual Studio Win.

2 ke a e Folder

@ Publsh ths Flder tothe setp
e Carfiuration ettngs

7 shr tis okdr

Eer Mirosoft Corporation

Ike

Other Places

& Ly
) My Documerts
& shared Documents
My Computer
&y etk Places

1. When you specify a release build in the Configuration Manager, Visual Studio places the compiled files in a Release folder. You specified this particular location and name for the files in the Lucky Property Pages dialog box. In this case, Visual Studio created a setup file (Setup.exe), an installation package for the Windows Installer (Lucky.msi), and a configuration settings file (Setup.ini).

Because you selected the Lucky.msi file, Windows Explorer displays the file type, author, and file size information for the file in the status bar. The Microsoft Press author name reflects a setting you made by using the Properties window earlier in this chapter. Lucky.msi contains the LuckySeven.exe file, the Readme.txt file, and setup program information.

TIP
To create an actual installation CD-ROM for your application, you would copy the entire contents of the Release folder to a writable CD-ROM at this point. If the target computers don’t include the .NET Framework, you should also copy the .NET Framework redistributable file (Dotnetfx.exe), which the user will have to install separately. You need a CD-RW drive to do this; check your computer documentation to see whether you have this capability, which is called “burning a CD” in industry slang.

Run the Setup program

1. Double-click the Setup.exe file in the c:\vbnet03sbs\chap14\lucky\ release folder to run the setup program for your application.

The Setup.exe program starts the Windows Installer program and gives users who don’t have a copy of Windows Installer on their system a chance to install it, which might require a reboot. After a moment, a dialog box entitled Welcome To The Lucky Setup Wizard appears, as shown here:

[image: image17.png]18 Lucky.

Welcome to the Lucky Setup Wizard

The insaller wil uide you though the steps required t instal Lucky on your computer

WARNING: This compulerprogram i prtected by coprightlaw and irtemational reaies.
Unsuthorzed duplcation o dstibuton of ths progtam, o any porion of i, may result in severe civi
ot ciminal penalies, and wil be prosecutec o the masim.m et possible under the low.

1. Click the Next button to continue the installation.

You’ll see the following Select Installation Folder dialog box, which prompts you for a folder location and allows you to set additional installation options:

[image: image18.png]Select Installation Folder

The insaller il instal Lucky tothe fllowing folder.

Toinstalin this flder, cick."Ne". To install 1o adierent folder, ente it below o click "Browse"”

Folder

C:\Program Files\deplopediLucky\. 1 Browse.

Install Lucky for yourse, o fo anyone wha uses this computer:

® Everyone.
Odustme

1. Notice that the default installation folder is c:\program files\acme\lucky. The “Acme” label matches the Author and Manufacturer property settings you made earlier by using the Properties window. (in the example above I used a folder named deployed. The Everyone and Just Me option buttons have to do with underlying security settings in the Windows operating system.

2. Click the Everyone option button, and then click Next.

The setup program asks you to confirm your installation settings by clicking the Next button. If you’re not sure, click Back to return to one or more dialog boxes to verify your selections, and then click Next until this dialog box is visible again.

3. Click Next to start the installation.

The setup program begins copying the necessary files to the folder location you specified. The program also registers the Lucky Seven application by using the system registry so that you can uninstall it later if you want to.

4. Click Close when the installation is complete.

So, That’s it! You did it! You created a working setup program that installs your application in a professional manner.

TIP
If you attempt to install this application on another computer, you must make sure that the target computer meets the minimum system requirements. Applications created with Visual Studio .NET require Windows 98 or later with Internet Explorer 5.01 or later, Microsoft Windows NT 4.0 Service Pack 6a or later with Internet Explorer 5.01 or later. Windows 95 isn’t supported. The target computer also requires the .NET Framework.

Run the Lucky Seven application

1. Click the Start button on the Windows taskbar, click Programs, and then click Lucky Seven.

Recall that this is the shortcut that you created by using the File System Editor.

Windows starts the program. The installation works!

TIP
You can also start the Lucky Seven program by browsing to the c:\program files\microsoft press\lucky folder by using Windows Explorer and then double-clicking the Lucky Seven.exe program.

2. Click the Spin button several times to play the game and verify that everything is running properly.

After 25 spins, your screen will look like this:

[image: image19.png]% Lucky Seven

One Step Further: Examining Setup Files and Uninstalling

As one final experiment with your installation, use Windows Explorer to examine the content of the c:\program files\Acme\lucky folder, and then uninstall the Lucky Seven test application. It’s always a good idea to see exactly what your deployment project installed and how Add/Remove Programs in Control Panel can be used to uninstall the program files. Complete the following exercises.

Check final installation files

1. Open Windows Explorer, and browse to the c:\program files\Acme\lucky folder.

This folder contains the Lucky Seven.exe program file and the Readme.txt file you included when you configured deployment project properties.

2. Click the View menu in Windows Explorer, and then click Details.

Windows Explorer displays a more detailed file listing, which allows you to see the file sizes and attributes associated with each file.

From the detailed file listing, you can see that the Lucky Seven.exe application file itself takes up only about 48 KB of disk space. However, a significant amount of disk space will be required for the .NET Framework. The .NET Framework files will take up 30 MB of disk space or more and are primarily installed in the Windows\Microsoft.NET folder. Notice that these file sizes can vary from system to system and among different builds of the Visual Studio development suite and the .NET Framework libraries, so your exact file sizes might be different.

1. Recall that you incorporated the Readme.txt file in your deployment project earlier in this chapter. When you create your own applications, be sure to create a simple Readme.txt file that contains basic usage information, instructions for uninstalling the program, and instructions on how to contact the company for help or more information.

2. Review the file, and then close the Notepad application.

Now you’ll practice uninstalling the Lucky Seven program and its support files.

Uninstall the test application

1. Click the Start button on the Windows taskbar, click Settings, and then click Control Panel.

Windows displays the Control Panel folder, containing tools for defining basic system settings and preferences.

2. Double-click Add/Remove Programs.

Add/Remove Programs allows you to install new applications or uninstall unwanted applications by using the application settings in the system registry. Because you installed the Lucky Seven application by using a setup program and the Windows Installer, Lucky is now included in the list of installed programs.

3. Locate the Lucky application in the list of installed programs.

Depending on whats installed on your machine, your screen will look like something like this:

[image: image20.png]1 Add or Remove Programs.

Changs or

Remave
Programs

Add tew
Programs

©

AddjRemove
Windows
Components

@

Set Program
ccess and
Defalts

Currently nstalled programs:

[e

§8) 3ava 2 Runtim Envircnment, 5 v1.4.2_01
580 3ava b start

K Karnauugh Minimizer

cick Chang

FET——
@ vedafing Tak Relsse 7.2.025
B icrosoft T Framevork 1.1
§3 Microsoft NET Framework SDK (English) 1.1
@ Hirosoft ASP NET Web Hatrix
(] Mirosoft Dt Access Components KB370653
%5 Microsoft Office Professional Edition 2003
BB icrosoft Office 7 Professionsl withFrortPage
Mirosct Sftware Inventory Ansyzer
) icrosoft visio 2000
9 Mirosot Ve Basic NET Step by Sep - Verson 2003 eBck

B Mcrosot s ¢ NET Redstrbutabl Pacage 1.1

or Remove.

106,004

16,616
6.96vB
.07
326,008
3158

21,0005

5050005
2418
0.8

987.0005
12548 ¥

1. Click the Support Information link in the Lucky application listing.

The following dialog box appears, which contains publisher, version, and contact information. You added this information by setting properties for the deployment project earlier in the tutorial

.

[image: image21.png]B Support Info

Lucky

Use the Follawing information £ get techrical support for
Lucky

Publsher Default Company Name
Version: 115
Contact oW

T his program = ot working propely you may
reinstal it by clcking Repair.

1. Click Close to close the Support Info dialog box.

2. Click the Remove button in the Lucky application listing to uninstall the program.

3. Click Yes when you’re asked to verify your decision to uninstall.

Add/Remove Programs starts the Windows Installer, which manages the uninstall process. After a few moments, the registry entries, .exe file, Readme file, shortcut, and supporting files for the Lucky Seven application are removed from the system. The Lucky listing is also removed from the list of installed programs.

4. Click Close to close Add/Remove Programs, and then close the Control Panel folder.

You’re done working with deployment projects in this chapter. You now have the skills to deploy, install and uninstall Visual Basic .NET projects safely.

