
 i

Craig Wootton, University of Ulster

VoiceBrowse:

The Dynamic Generation

Of Spoken Dialogue from Online

Content

Craig Wootton

BSc. (Hons) Computing Science

with Dip. Industrial Studies

Faculty of Computing and Engineering of the University of Ulster

Thesis submitted for the degree of Doctor of Philosophy

October 2008

 ii

Craig Wootton, University of Ulster

Declaration

"I hereby declare that with effect from the date on which the thesis is deposited in the

Library of the University of Ulster, I permit the Librarian of the University to allow the

thesis to be copied in whole or in part without reference to me on the understanding that

such authority applies to the provision of single copies made for study purposes or for

inclusion within the stock of another library.

This restriction does not apply to the British Library Thesis Service (which is permitted

to copy the thesis on demand for loan or sale under the terms of a separate agreement)

nor to the copying or publication of the title and abstract of the thesis.

IT IS A CONDITION OF USE OF THIS THESIS THAT ANYONE WHO

CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH THE

AUTHOR AND THAT NO QUOTATION FROM THE THESIS AND NO

INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS THE

SOURCE IS PROPERLY ACKNOWLEDGED".

 iii

Craig Wootton, University of Ulster

Acknowledgements

I wish to acknowledge several people who have helped guide, support and direct me

throughout this research.

Firstly, I wish to thank Prof. Mike McTear for sharing his extensive knowledge of the

subject area, and for being generous with both his time and involvement. Prof. McTear

has been a great teacher, mentor, advisor and friend these last three years, and I found

myself both fortunate and privileged to have spent time in learning under his guidance.

I wish him all the best for his future retirement, and for forthcoming opportunities he

will pursue into this new period of his fruitful career, characteristic of his continuous

thirst of discovering new knowledge.

Thanks also to Prof. Terry Anderson, who played the supporting role to Mike in

supervising me ever so well. My thanks to Prof. Anderson for his giving of time in

meetings, in proof reading, in the little nuggets of advice and ideas he continuously had

to offer, and also in the answering of all the little XML and XPATH related problems I

burdened him with.

Thanks also to Prof. Sebastian Möller, his team of researchers, and in particular Klaus-

Peter Engelbrecht. My thanks to them all for shaping and moulding the evaluation

phase of the research with their expertise in the area, and for their help also during the

analysis phase.

Thanks to the body of researchers and friends in „J26‟, who have continuously offered

the needed social breaks and coffees during these last three years – the support role that

the room plays to both me and to one another cannot be undermined. Thanks also to all

 iv

Craig Wootton, University of Ulster

my friends outside of University and in particular those at McQuiston, who have

encouraged me and supported me throughout this study.

Thanks also to my 32 evaluation subjects who so willingly gave of their time to help me

complete the research.

Lastly, thanks to my family, in particular to my Mum and Dad, who have supported,

encouraged, provided for and sustained me during my seven years in full time

education. Their love and guidance has been valuable to me, and I thank them for

shaping me into the person I am today.

Thanks

Craig

 v

Craig Wootton, University of Ulster

Abstract

Most dynamic spoken dialogue systems operate with specifically structured task or

domain knowledge using dialogue management strategies that are either hand-crafted or

learned from data. To date this has limited interactions using such systems to a sole

domain, so that a dialogue manager that can interact generically with multiple types of

content from various structured and unstructured sources has yet to be fully realised.

This thesis describes VoiceBrowse, a dynamically evolving dialogue system that

enables users to access online content. Whereas in previous such systems the online

content was restricted to a small number of specific websites, the current system is

capable of interacting with various unstructured online contents, irrespective of source

or type. This is made possible by the inclusion of a novel component known as the

Content Manager that provides access to a wide range of online materials using

live RSS feeds and real-time API-based techniques. Ideas from information retrieval

are incorporated to dynamically select the source(s) that best match the user's

requirements.

An evaluation study tests the usability and performance of VoiceBrowse with respect to

different user groups interacting with two different versions of the system. Analysis of

the data highlights significant differences between the groups and systems, contributing

to current dialogue usability research that has been generally restricted to task based

dialogues.

 vi

Craig Wootton, University of Ulster

Contents

Title Page ... i
Declaration ... ii
Acknowledgements ... iii
Abstract .. v

Contents .. vi

List of Figures ... ix

List of Tables .. x

List of Code Excerpts .. xi

Glossary of Technical Terms ... xii

Chapter 1: Introduction ..15

1.1 Research Area and Issues .. 15

1.2 Research Aims and Objectives .. 17

1.4 Thesis overview and Outline ... 18

Chapter 2: Spoken Dialogue Systems: Overview ...20

2.1 Spoken Dialogue Systems: Introduction ... 20

2.2 Spoken Dialogue Systems: Typical Components and Architecture....... 21

2.3 Spoken Dialogue Systems: Dialogue Manager .. 22

2.4 Spoken Dialogue Systems: Advantages .. 28

2.5 Spoken Dialogue Systems: Limitations ... 30

2.6 Spoken Dialogue Systems: Multimodal Dialogue Systems 32

2.7 Spoken Dialogue Systems: Evaluation .. 35

2.8 Spoken Dialogue Systems: Usability Considerations .. 38

2.9 Enabling technologies ... 41

2.9.1 Enabling Technologies: XML .. 42

2.9.2 Enabling Technologies: XML Applications .. 44

2.9.3 Enabling Technologies: Voice technologies ... 46

2.10 Spoken Dialogue Systems: Advanced Architectures ... 49

2.10.1 Advanced Architectures: Queen’s Communicator .. 50

2.10.2 Advanced Architectures: JASPIS Architecture ... 54

2.10.3 Advanced Architectures: CONVERSE Architecture .. 55

2.10.4 Advanced Architectures: RAVENCLAW Architecture ... 56

2.10.5 Advanced Architectures: Research Issues ... 57

 vii

Craig Wootton, University of Ulster

2.11 Summary ... 59

Chapter 3: Advanced Dialogue Research ...60

3.1 Spoken Dialogue Systems: Dynamic Dialogue Systems .. 60

3.1.1 Dynamic Dialogue Systems: Utilising Structured Content ... 62

3.1.2 Dynamic Dialogue Systems: Utilising Unstructured Online Content 66

3.1.3 Dynamic Dialogue Systems: Research Issues ... 72

3.2 Adaptive Spoken Dialogue Systems .. 75

3.2.1 Adaptive Dialogue Systems: Adapting Dialogue .. 76

3.2.2 Adaptive Dialogue Systems: Introduction to User Modelling 78

3.2.3 Adaptive Dialogue Systems: Adapting Content ... 80

3.2.4 Adaptive Dialogue Systems: Research Issues .. 83

3.3 Information Retrieval .. 85

3.4 Summary ... 87

Chapter 4: VoiceBrowse Introduction and Architecture ...89

4.1 VoiceBrowse: Requirements Derived From Research Gaps 89

4.2 VoiceBrowse: Applications and Users ... 91

4.3 VoiceBrowse: Use Cases and Example Dialogues ... 91

4.4 VoiceBrowse: Architecture ... 96

4.5 VoiceBrowse: Utilising RSS and API feeds ... 98

4.6 VoiceBrowse: User Manager ... 102

4.7 VoiceBrowse: Dialogue Manager .. 103

4.8 VoiceBrowse: Content Manager ... 105

4.9 VoiceBrowse: Research focus ... 105

4.10 Summary ... 106

Chapter 5: VoiceBrowse Content Manager .. 108

5.1 Content Manager: Introduction .. 108

5.2 Content Manager: Issues and Concerns ... 110

5.3 Content Manager: Design and Process .. 112

5.4 Content Manager: Content Spotter Evaluation and Enhancements 114

5.5 Summary ... 121

Chapter 6: VoiceBrowse Dialogue Manager ... 122

6.1 Dialogue Manager: Introduction ... 122

6.2 Dialogue Manager: Issues and Concerns .. 124

 viii

Craig Wootton, University of Ulster

6.3 Dialogue Manager: Proposed Dialogue Strategies ... 126

6.4 Dialogue Manager: Handling User Inputs ... 128

6.5 Dialogue Manager: Handling System Outputs .. 130

6.6 Summary ... 132

Chapter 7: VoiceBrowse Implementation ... 135

7.1 Current Dialogue Technologies ... 135

7.2 VoiceBrowse Implementation: VoiceXML and Call Flow Diagrams 139

7.3 VoiceBrowse Implementation: Prompt Design ... 147

7.4 VoiceBrowse Implementation: Content Manager .. 154

7.5 VoiceBrowse Implementation: Dialogue Manager ... 161

7.6 VoiceBrowse Implementation: Information Based Dialogues 165

7.7 VoiceBrowse Implementation: Delivery of Online Content 176

7.8 VoiceBrowse Implementation: Task Based Dialogues .. 183

7.9 VoiceBrowse Implementation: Challenges and Issues Encountered 189

7.10 VoiceBrowse Implementation: Example Dialogues .. 194

7.11 Summary ... 200

Chapter 8: VoiceBrowse Evaluation .. 202

8.1 VoiceBrowse Evaluation: Design ... 202

8.2 VoiceBrowse Evaluation: Results .. 206

8.3 VoiceBrowse Evaluation: Discussion ... 222

8.3.1 Discussion: Hypothesis 1, Hypothesis 4 and Hypothesis 5 223

8.3.2 Discussion: Hypothesis 2 .. 228

8.3.3 Discussion: Hypothesis 3 .. 232

8.4 VoiceBrowse Evaluation: Conclusions .. 234

Chapter 9: VoiceBrowse Conclusions .. 238

9.1 VoiceBrowse Conclusions: Summary of Thesis ... 238

9.2 VoiceBrowse Conclusions: Summary of Research Contributions 239

9.2 VoiceBrowse Conclusions: Future Work ... 241

References ... 244

Appendix A: Publications .. 258

Appendix B: Evaluation Material .. 259

Evaluation Design .. 259

Evaluation Schedule .. 260

Pre-Screening questionnaire ... 261

 ix

Craig Wootton, University of Ulster

Initial Questionnaire .. 262

Evaluation of the Interaction .. 263

Evaluation of the System .. 271

Evaluation scenarios ... 272

Appendix C: Evaluation Results ... 274

Interaction Parameters (Quantitative) Results ... 274

Qualitative (Questionnaire) Results .. 277

List of Figures

Figure 2.1: Typical Spoken Dialogue System Architecture..22

Figure 2.2: DARPA Architecture..49

Figure 2.3: Queen's Communicator Architecture………………...…………………….51

Figure 2.4: Queen's Communicator Dialogue Manager………………...………….......52

Figure 2.5: JASPIS Architecture...54

Figure 2.6: CONVERSE Architecture...56

Figure 2.7: RavenClaw Dialogue Manager in RoomLine...57

Figure 3.1: Ritel Architecture..65

Figure 3.2: Customisable Phone Access to Personal Information...................................69

Figure 3.3: WebTalk Architecture...71

Figure 3.4: Adaptive Place Advisor Architecture...82

Figure 4.1: VoiceBrowse Use Case – System Functionality..92

Figure 4.2: VoiceBrowse Use Case - Available Dialogues Types..................................92

Figure 4.3: VoiceBrowse Use Case - Information-Based Dialogues..............................93

Figure 4.4: VoiceBrowse Use Case – Task-Based Dialogues...93

Figure 4.5: VoiceBrowse Dialogue...94

Figure 4.6: VoiceBrowse Architecture..96

Figure 4.7: An Example RSS Feed..99

Figure 5.1: Content Manager...108

Figure 5.2: An Example RSS Feed..112

Figure 5.3: Document Space Creation From RSS Feeds...113

Figure 5.4: Content Spotter Process..114

Figure 5.5: Comparison of Calculations tw1 and tw2...119

Figure 5.6: Comparison of Calculations tw1 and tw3...120

Figure 6.1: Dialogue Manager...123

 x

Craig Wootton, University of Ulster

Figure 6.2: Grammar Creation In The Dialogue Manager..129

Figure 6.3: Outputting Content To The User..131

Figure 6.4: VoiceBrowse Workflow...133

Figure 7.1: VoiceBrowse Environment...142

Figure 7.2: VoiceBrowse Call Flow Diagram...143

Figure 7.3: VoiceBrowse Revised Call Flow Diagram...146

Figure 8.1: Scenario Duration w.r.t. User Group..211

Figure 8.2: Number <noinput> w.r.t. User Group...211

Figure 8.3: Number of Barge-Ins w.r.t. User Group...211

Figure 8.4: Number of Help Requests w.r.t. User Group..211

Figure 8.5: Number of New Queries w.r.t. User Group..212

Figure 8.6: Number of <nomatch> w.r.t. User Group...212

Figure 8.7: Number of Turns per Scenario w.r.t. User Group.......................................212

Figure 8.8: Overall Rating w.r.t. User Group..212

Figure 8.9: Efficiency Rating w.r.t. User Group...213

Figure 8.10: SASSI Annoyance w.r.t. User Group...213

Figure 8.11: SASSI Cognitive Demand w.r.t. User Group...213

Figure 8.12: SASSI Likeability w.r.t. User Group..213

Figure 8.13: SASSI Accuracy w.r.t. User Group..214

Figure 8.14: Efficiency Rating w.r.t. User Group...14

Figure 8.15: SASSI Annoyance w.r.t. User Group...214

Figure 8.16: SASSI Cognitive Demand w.r.t. User Group...214

Figure 8.17: SASSI Likeability w.r.t. User Group..215

Figure 8.18: SASSI Accuracy w.r.t. User Group..215

Figure 8.19: Efficiency Rating w.r.t. User Group...215

Figure 8.20: SASSI Annoyance w.r.t. User Group...215

Figure 8.21: SASSI Cognitive Demand w.r.t. User Group...216

Figure 8.22: SASSI Likeability w.r.t. User Group..216

Figure 8.23: SASSI Response Accuracy w.r.t. User Group..216

List of Tables

Table 5.1: Preliminary Experiment Setup...115

Table 5.2: Preliminary Experiment Results...116

Table 5.3: Enhanced COSIM Experiment Results..118

Table 7.1: VoiceBrowse Prompt Design...149

 xi

Craig Wootton, University of Ulster

Table 7.2: VoiceBrowse Pseudo Code For Information Based Dialogues....................166

Table 7.3: Voxeo RecordCall Attribute Specification...168

Table 7.4: VoiceBrowse Pseudo Code For Outputting Content....................................177

Table 7.5: VoiceBrowse Pseudo Code For Task Based Dialogues...............................184

Table 7.6: Sample Dialogues With VoiceBrowse...194

Table 8.1: Usability Category Definitions...206

Table 8.2: Questionnaire Results...209

Table 8.3: Interaction Parameters..210

List of Code Excerpts

Code Excerpt 1: API VoiceBrowse Specification...155

Code Excerpt 2: VoiceBrowse API Specification...156

Code Excerpt 3: Function to Produce List of Current Feeds...157

Code Excerpt 4: Function to Produce Document Space..159

Code Excerpt 5: Function to Fetch Body of Content From Source URL......................160

Code Excerpt 6: PHP To Save <record> Audio Data..161

Code Excerpt 7: Function to Start Speech Recognition Process...................................162

Code Excerpt 8: Visual Basic.Net Speech Recognition Function.................................162

Code Excerpt 9: Function to Add new Dialogue History Record to Database.............164

Code Excerpt 10: Function to Get Previous Dialogue State From History...................164

Code Excerpt 11: ASP.Net Response Statement...165

Code Excerpt 12: Voxeo Proprietary RecordCall Element...168

Code Excerpt 13: informationStart.aspx In Closed Version...169

Code Excerpt 14: Function to Match User Utterance To Available Feeds...................171

Code Excerpt 15: Outputting Matched Feeds to User and Waiting For Input..............174

Code Excerpt 16: Transitions to Informative or Task Based Dialogues.......................175

Code Excerpt 17: informationStart.aspx In Open Version..176

Code Excerpt 18: Speech Recognition On Saved .Wav File...176

Code Excerpt 19: Cosine Similarity Function of Content Spotter................................179

Code Excerpt 20: Outputting Matched Documents To The user..................................179

Code Excerpt 21: Fetching Content Body From URL..181

Code Excerpt 22: Outputting Main Content Body To User..182

Code Excerpt 23: Collecting API Parameter From User...185

Code Excerpt 24: Confirming API Parameter Uttered By User....................................186

Code Excerpt 25: Outputting API Results To user..187

 xii

Craig Wootton, University of Ulster

Glossary of Technical Terms

.Net Framework: Software technology that is available with several Microsoft Windows

operating systems, which includes a large library of pre-coded solutions to common

programming problems and a virtual machine that manages the execution of programs.

Adaptive Dialogue System: A spoken dialogue system that adjusts its outputs and

dialogue management to best meet the user‟s needs.

Application Programming Interface (API): A set of functions, procedures, methods,

classes or protocols that an operating system or service provides to support requests

made by a software program.

Architecture: The structure of a system, comprising of multiple interacting software

components.

Automatic Speech Recognition Engine (ASR): Software that performs speech

recognition.

Cosine Similarity (COSIM): A measure of similarity between two vectors of n

dimensions by finding the cosine of the angle between them. When used to compare

text documents, the vectors represent terms found in the documents, specified by their

tf-idf.

Dialogue Knowledge: The rules and information with respect to how the dialogue

should be executed between parties, such as verification strategies, available dialogue

strategies and initiatives.

Dialogue Manager: Software that implements the dialogue rules written by a developer

to encourage interaction with a user. Usually performs the processing in a dialogue

system.

Dialogue System: A computer system intended to converse with a human, primarily

through natural language.

Domain Knowledge: Structured representation of the content to be utilised by the

dialogue manager. Typical specifications includes database format, XML format and

ontologies.

Dynamic Dialogue System: A spoken dialogue system that is not static in nature, with

grammars and outputs usually created during runtime.

Grounding: Establishing beliefs between parties in a dialogue.

Grammar: A set of word patterns that tells an ASR what utterances are allowed as input.

Information Retrieval: The science of searching for documents, for information within

documents and for metadata about documents, as well as that of searching relational

databases and the World Wide Web

Interaction Parameters: Quantitative metrics of dialogue, such as dialogue length, word

error rate and number of user turns.

Language Generation Engine: Software that creates a natural language utterance to be

output to the user that furthers the dialogue.

Language Understanding Engine: Software that accepts text as input and infers the

underlying meaning to the utterance.

 xiii

Craig Wootton, University of Ulster

Microsoft SQL Server: A popular database management system.

Multimodal Dialogue Systems: A dialogue system that can accept more than one mode

of input and/or output, such as combining speech with graphics, gesture recognition and

emotion recognition.

Named Entity: An atomic element that is found in a sentence, often a Proper Noun.

Narrative Based Dialogue: A dialogue between two or more parties that often does not

have a set task to complete, is usually based upon descriptive content such as news and

evolves in an opportunistic, unspecified manner.

Online Content: Information held on online source, such as web pages.

Really Simple Syndicate (RSS): A XML based formats used to publish frequently

updated works in a standardized specification.

Semantic Web: An evolving extension of the World Wide Web in which the semantics

of information and services on the web is defined, making it possible for the web to

understand and satisfy the requests of people and machines to use the web content

Spoken Dialogue System: A dialogue system that interacts through voice, accepting

spoken inputs from the user and presents output in spoken form.

Speech Recognition: Accepting speech input from a user and transcribing the utterance

to written text. Usually seen as the input to a spoken dialogue system, accepting the

spoken input by a user and converting this to written text for processing.

Speech Recognition Grammar Specification (SRGS): A W3C standard for specifying

speech recognition grammars. Can take a variety of forms, including XML.

Speech Synthesis Mark-up Language (SSML): W3C standard for specifying synthesised

content, which provides a standard way of controlling aspects such as pitch, volume,

rate etc.

Task Based Dialogue: A dialogue between two or more parties that has a common goal

or task to accomplish.

Term Frequency–Inverse Document Frequency (tf-idf): A statistical measure used to

evaluate how important a word is to a document in a collection or corpus. The

importance increases proportionally to the number of times a word appears in the

document but is offset by the frequency of the word in the corpus.

Text-To-Speech Engine (TTS): Converts written text to speech for output. Usually

performs the output of a dialogue system, converting the text generation by the

language generation engine into spoken output.

Usability: The ease with which people can employ particular software in order to

achieve a particular goal.

User model: A representation of the user‟s interests and interaction history created to

refine dialogue and search results.

VisualBasic.Net: An object-oriented computer language which is an evolution of

Microsoft's Visual Basic and is implemented on the Microsoft .NET framework

VoiceXML: The W3C's XML based standard format for specifying interactive voice

dialogues between a human and a computer. It allows voice applications to be

developed and deployed in a similar way that HTML is used for visual applications.

 xiv

Craig Wootton, University of Ulster

Voxeo Prophecy: Platform for implementing a VoiceXML system, including ASR and

TTS components.

WordNet: A database of words that groups words into sets of synonyms called synsets,

provides short, general definitions, and records the various semantic relations between

these synonym sets.

XML: The Extensible Mark-up Language is a general-purpose specification for creating

custom mark-up languages.

 15

Craig Wootton, University of Ulster

Chapter 1: Introduction

The development of Human-Computer Interfaces to incorporate both speech and natural

language technologies has been a goal that is still to be truly realised. Spoken dialogue

research is an area of research that seeks to understand and advance work in this area of

natural interfaces, integrating the inputs and outputs of Automatic Speech Recognition

(ASR) and Text-To-Speech (TTS) technologies with language understanding and

dialogue components.

1.1 Research Area and Issues

Recent work and innovation in spoken dialogue systems has started to emerge into the

public domain, and some industries and companies have already identified the

commercial benefits of such systems. First generation spoken dialogue systems

deployed in industry could be thought of as a rudimentary but an effective form of

interaction - allowing the completion of tasks such as booking and purchasing services,

reviewing bills and payments, and directory assistance.

Academic dialogue research meanwhile endeavours to advance these initial dialogue

systems into more natural and flexible systems. Such systems can adapt to meet the

particular needs of the current user, evolve „on-the-fly‟ to create more dynamic and

variable dialogues, and engage in more complex dialogue to help the user accomplish a

particular task. Others areas of Artificial Intelligence have also merged with Spoken

Dialogue research to further this work even more, such as the utilisation of machine and

reinforcement learning techniques to optimise system design and performance.

For these advanced features of dialogue systems to function effectively, it is often the

case that dialogue knowledge and domain knowledge are separated from one another –

 16

Craig Wootton, University of Ulster

consequently the representation of the domain knowledge is required to be specifically

structured for and accessible to the dialogue manager. Structures such as databases or

ontologies, and associated query languages, are often used to store and query the

domain knowledge, which the dialogue manager can then utilise when needed.

Due to the domain representation being well defined and specifically for one domain,

dialogue managers cannot generically interact with more than one structure or domain.

This has led to a current lack of multi-purpose and multi-domain dialogue managers that

can interact with various representations of domains. For example, a well defined

database for an airline reservation system is created specifically for that domain and

purpose, and will therefore be remarkably different in structure to a pizza ordering

system.

Contrast this with the Internet and the largely unstructured nature of the online

documents available. Although HTML provides a syntactically well defined

specification instructing a graphical browser how to render the web page visually, it

provides no semantic or presentational information, and each web page can be

represented differently with respect to the HTML. This has been a major issue and

challenge for dialogue researchers wishing to complement the graphical browser with a

dialogue interface to online content - dialogue systems are traditionally created to

interact with a specific content type and structure, unlike online content which typically

goes beyond such requirements. This is one aspect of the research challenge to be

addressed in this dissertation - that of generically accessing online content from various

unstructured sources and utilising them in dialogue.

A second aspect of the research is concerned with usability. Usability has been an

important issue for many years during the development of the computer and even more

 17

Craig Wootton, University of Ulster

so since the evolution of the graphical user interface. The concept of making a piece of

software „usable‟ for different users and their needs is highly important also for

dialogue engineers, due to the increasing emergence of dialogue systems deployed in

industry and the associated public awareness of such systems.

However dialogue systems present a number of additional challenges for usability

engineers - inputs have to be constrained to comply with the limitations of speech

recognisers and the constraints of specially constructed language models; outputs need

to be relevant and meaningful to the user without being cognitively difficult; the

functionality of the system needs to be obvious to the user; and error and confirmation

strategies must provide an easy way of recovery in the event of mis-understandings and

non-understandings.

Usability considerations are made somewhat more complex for information-based

dialogues – interactions that aim to provide news and similar information to the user

instead of completing a set task. At present there is a current lack of usability studies

with regards to information-based dialogues.

1.2 Research Aims and Objectives

The aim of this research is to further the knowledge and contribution of dynamic

dialogue systems with regard to browsing the Internet through voice. Objectives to

attain this aim can be summarised as:

 Explore the literature on dynamic spoken dialogues.

 Identify and address the main issues and challenges regarding browsing online

content through dialogue.

 18

Craig Wootton, University of Ulster

 Develop a dialogue system that interfaces with the Internet, overcoming the

shortfalls identified in the literature review.

 Evaluate and measure the performance of the developed dialogue system,

assessing its technical qualities and its potential in terms of usability for end

users.

It is the thesis of this research that for dialogue systems to interface with the Internet,

there are both technical and usability challenges that need to be addressed. The

VoiceBrowse system has been designed and implemented to overcome current

shortcomings and limitations in these specific areas, which can be summarised as:

 The requirement of specifically structured domain knowledge purposely crafted

for each dialogue manager. VoiceBrowse has been developed to make use of on

online content from different sources that do not conform to a standard structure.

 That dynamic dialogue systems have traditionally been developed for dialogue

in a specific domain. VoiceBrowse has been developed to interact generically in

various domains and content types that evolve over time.

 That there has not been the same degree of usability research with respect to

opportunistic information-based dialogues when compared to traditional task-

based dialogue. VoiceBrowse will further this field of dialogue usability study,

specifically for browsing the Internet through a dialogue interface.

1.4 Thesis overview and Outline

The area of spoken dialogue systems will first be introduced and reviewed in Chapter 2.

More advanced dialogue research relevant to the aims and goals of this research will be

surveyed in Chapter 3. Current limitations and gaps in the literature will be identified

 19

Craig Wootton, University of Ulster

and summarised, leading to a requirement specification of VoiceBrowse presented in

Chapter 4.

The VoiceBrowse architecture will then be discussed, outlining its features and

components that overcome the shortcomings identified with respect to browsing the

Internet through dialogue. Chapters 5 and 6 then present and explain in detail the two

components of VoiceBrowse which have been the focus of this research, namely the

Dialogue Manager and the Content Manager. The role, purpose and functionality of

both are introduced, and the generic nature of the dialogue manager that enables it to

interact with a wide range of content types is further explored. The Content Manager is

the most novel component of VoiceBrowse, enabling the Dialogue Manager to interact

with a range of content types. A detailed description of the Content Spotter is included

here, and the Information Retrieval mechanisms and techniques that are used here are

also explained.

Chapter 7 discusses the implementation of VoiceBrowse in detail, specifically the

technical challenges associated with realising the VoiceBrowse architecture. The

technical and usability requirements that were specified in Chapter 2 are then used as a

basis for evaluation in Chapter 8, along with a discussion and analysis of the results.

Conclusions and a summary of the contributions to knowledge are summarised in

Chapter 9, together with suggestions for future research.

 20

Craig Wootton, University of Ulster

Chapter 2: Spoken Dialogue Systems: Overview

The following chapter presents the area of spoken dialogue systems in order to

introduce the subject area and establish key issues. A typical architecture and its

components will be briefly discussed before specifically looking at the Dialogue

Manager in particular. Advantages and limitations of such systems will be considered,

along with other areas of importance, such as matters regarding the evaluation and

usability of spoken dialogue systems. Enabling technologies will be presented, before

an overview of more advanced systems concludes the chapter.

2.1 Spoken Dialogue Systems: Introduction

“Speech is the ultimate, ubiquitous interface. It is how we should be able to

interact with computers. The question is when should it begin supplementing the

keyboard and mouse? We think the time is now.”

(Armstrong 1994)

Being the most natural form of interaction between humans, speech has been, and will

be, the dominant mode of human social bonding and information exchange (Huang et

al. 2001). Since the 1950s, Artificial Intelligence researchers have sought to bring a

speech interface to the computer (Rabiner & Juang 1993). Traditional interfaces,

however, between humans and computers, have evolved into a graphical based

approach, commonly known as the Graphical User Interface (GUI). Rather than the

machines adapting to humans, humans have adapted to a form of interaction suited for

machines, and graphical interfaces have become a very usable and widely accepted

standard for interaction.

 21

Craig Wootton, University of Ulster

Spoken dialogue systems provide a natural language based alternative to the graphical

interface. Jurafsky & Martin (2008) define spoken dialogue systems as programmes

that communicate with users in spoken natural language in order to accomplish tasks

such as making travel arrangements, or answering questions. It important to make a

distinction between spoken dialogue systems and other types of speech based systems,

such as voice control, call routing, or voice search systems. Systems such as these are

more restricted with respect to dialogue, generally using speech recognition to translate

spoken words onto a finite set of options. Spoken dialogue systems include additional

components, such as language understanding and dialogue management, collaborating

with the user in dialogue to solve a common goal.

Language understanding is a highly challenging area of research. Although there have

been great advances in speech recognition technology in previous years it is still very

difficult to extract the underlying meaning, or semantics, of what has been spoken.

Traditional approaches have been to look solely at the words and syntax of the utterance

spoken by the user, but future directions in this area will see this information

incorporated with other information, such as prosody, dialogue history and pragmatic

salience (Bangalore et al 2006).

2.2 Spoken Dialogue Systems: Typical Components and Architecture

A spoken dialogue system consists of a number of components that need to interact with

each other in order for the whole dialogue system to function successfully. The

components are from a wide variety of disciplines outside dialogue research, such as

speech recognition, natural language understanding, and natural language generation.

A typical spoken dialogue architecture, illustrated in Figure 2.1, includes a speech

recognition engine that recognises the input from the user - once captured, the

 22

Craig Wootton, University of Ulster

recognised words have to be parsed and understood by the system, which is the task of

the language understanding engine. It is the role of the dialogue manager to decide

what to do next in the interaction, based on the meaning of the words extracted and the

current state of the dialogue. More information may be needed from the user before

continuing, or perhaps a confirmation is required. This response is taken by a language

generation engine that will formulate an appropriate, meaningful sentence to be output

to the user. Finally, the text-to-speech engine will take the sentences produced by the

language generator and covert them into a spoken form that can be output by the audio

player of the system. This particular research project focuses on the dialogue

management aspect of the overall architecture.

2.3 Spoken Dialogue Systems: Dialogue Manager

The Dialogue Manager is primarily concerned with ensuring the conversational flow

between human and machine, ensuring that the dialogue is coherent with the task to be

Figure 2.1: Typical Spoken Dialogue System Architecture

 23

Craig Wootton, University of Ulster

accomplished and with the user. Möller (2005) defines the core functions that are to be

provided by the dialogue manager;

 The collection of information that is required for the task to be completed.

 Interpretation of complex discourse.

 The organisation of meaningful outputs to the user.

 To provide help to the user when needed.

 The distribution of dialogue initiative.

 To provide relevant feedback to the user, verifying the information understood

by the system (grounding).

 Correction strategies for errors and misunderstandings.

Typical spoken dialogue systems are created to accomplish a specific task, such as

booking a flight or cinema ticket. It is the dialogue manager that, once given

knowledge of this task, will output the appropriate questions to the user to extract the

needed information from them, such as departure and destination airports. In some

dialogue systems, more complex, natural language inputs are allowed from the user, and

the dialogue manager, along with a language understanding component, will interpret

and extract the meaning and intent from the user‟s phrase. Similarly, on the output side

of the dialogue, the dialogue manager must arrange and speak the information back to

the user in a meaningful and appropriate way. As discussed later with regard to

usability (see Section 2.8), there are limitations and constraints to the methods of

outputting information to the user. Various help functions should also be available to

increase the usability of a dialogue system, and it is the role of the dialogue manager to

 24

Craig Wootton, University of Ulster

record and track the history of the interaction, and offer help when it decides the user

requires assistance. This should also be available on demand for the user.

Traditional approaches that have been used to implement these functions include

dialogue grammars, plan-based approaches and collaborative approaches (Churcher

1997). A similar classification of implementation approaches provided by McTear

defines the categories as finite state, frame based, and agent based dialogue

management (McTear 2004a: 91).

Dialogue grammar and finite state based dialogues are the most rigid and inflexible of

the different approaches. They can be represented by state transition networks where

the nodes represent information that must be elicited from the user, and the transitions

are the various paths through the dialogue that are selected based on the semantic

interpretation of the user‟s utterance that is limited to a range of keywords and phrases

specified in a Context-Free-Grammar (CFG). Simplistic but effective, they are however

very inflexible as the paths through the interaction are fixed for each dialogue.

Frame based dialogues allow for some more flexibility than finite state approaches,

allowing the users to over-specify answers and to avoid being tied into a fixed path

through the interaction. The dialogue is represented as a hierarchical form containing

slots, and each slot must be filled for the dialogue manager to deem a certain task as

completed. If the user provides values for more than one slot, then the associated values

can be placed into their respective slots. The dialogue, however, is still inflexible, as

no form of conversation or true negotiation can take place between user and machine.

For this more advanced type of dialogue, agent based control is required.

Drawings on techniques from Artificial Intelligence, such as game theory and planning,

agent based and plan based approaches seek to overcome the rigidity and inflexibility

 25

Craig Wootton, University of Ulster

associated with both finite state and frame based approaches. They are based on the

observation that humans plan their actions to achieve various goals (Huang et al. 2001;

Allen et al. 2001). They permit a more flexible and conversation like interaction,

however they can be complex to construct and operate in practice. Alternatively,

instead of concentrating on the structure of the task, collaborative based approaches

attempt to capture the generic nature of dialogue and the beliefs of both user and

system. This approach also requires more sophisticated natural language understanding

and interpretation techniques.

Recently, however, statistical approaches have been applied in dialogue management to

determine the system‟s response (Griol et al. 2008). However, the main limitation of

these approaches is their need for large corpora of data. Machine learning has also been

used in the field of dialogue study (Lemon et al. 2006, Litman et al. 2000; Litman et al.

1999), with transformation-based learning and hidden vector state models two common

machine learning paradigms (He & Young 2006). Alternatively, reinforcement

learning, as demonstrated in the NJfun system, involves an exploration of the possible

system actions when the dialogue is in a particular state, and decides on the best action

which will optimise the system‟s performance with regard to a stated utility function

(Singh et al. 2002).

The initiative of the dialogue describes who is leading the conversation, either the user

or the system. If the user has the initiative, then he/she can speak freely to the system as

it will be more open ended, allowing them to ask questions to the system in an

unrestrictive manner. As a consequence however, difficulties can arise when the user

asks a question that the system cannot understand, either because the words are out of

its vocabulary or out of its particular domain. Furthermore, more complex language

 26

Craig Wootton, University of Ulster

understanding capabilities are required to recognise the concept and intent of the

questions uttered by the user, including more advanced strategies for correcting errors in

an open ended fashion.

In contrast to user initiative is system initiative, which offers a more inflexible and less

open ended form of dialogue. The system simply asks questions, one at a time to the

user, who then provides individual answers one at a time. Although at first it may

appear to be a disadvantage to have the system simply ask questions to the user, with

which they can respond with simple answers, this can be a very effective form of

dialogue. The users generally have an idea of what they can say back to the system

without it resulting in error, and the correct information is always requested from the

user for the task that the system is performing. However, it does leave the dialogue

„closed‟, leaving the user directed by the system. It can also take longer to complete a

dialogue, as the user can generally only provide one piece of information at a time for

each system question.

Mixed initiative combines the advantages of both approaches, allowing both user and

system to control the dialogue. Typically, such systems initiate the dialogue with user

initiative, allowing the user to state their intentions in an open ended manner. If errors

are encountered as the dialogue continues, or there is limited progress in completing the

task, then the Dialogue Manager will switch to system initiative, and guide the user

through the dialogue to completion.

Once the system has received information from the user, it must be confirmed due to the

potential errors that occur in speech recognition. The speaker and hearer must

constantly establish common ground, that is, the set of things that are mutually believed

by both speakers (Jurafsky & Martin 2000; Clark 1996; Traum & Allen 1994). This

 27

Craig Wootton, University of Ulster

concept of grounding is very important in spoken dialogue systems for the completion

of the task by the system, and the correctness with which it is completed. Indeed, it

could be quite disastrous if the system has misunderstood the user, and booked the user

on the wrong flight, for example. Generally there are two grounding techniques

available - implicit and explicit verification.

Explicit verification allows for easier error recovery by asking the user explicitly if the

utterance was recognised correctly, e.g., “Did you say Boston?”, “Ok, you want to fly to

New York, Correct?”. Like system led initiative however, this will slow down the

dialogue if each new value elicited by the user is confirmed. Implicit confirmation can

be used in conjunction with the next question to confirm the new value e.g., “Ok, where

would you like to fly to from Boston?” Although this would speed up the dialogue it

also becomes difficult to correct, as the system would require understanding of a vast

range of responses from the user e.g., “No, not Boston”, “No, I meant Austin, not

Boston”, “I would like to fly to New York, but from Austin” etc. In order to cope with

input such as this, the system requires a more sophisticated language understanding

component.

Equally as important is the area of error handling - it is not always the case that what the

user says will be correctly understood by the dialogue system, and it is important to

handle errors effectively when they arise. Error handling in a dialogue system is

somewhat more complex than in a Graphical User Interface, and can be classified as

either misunderstanding or non-understanding (Bohus & Rudnicky 2005a).

Misunderstanding errors refer to the system applying the incorrect meaning to a user‟s

input, whereas in non-understanding the system fails altogether to detect any

meaningful semantic interpretation of the user‟s input at all. The latter is often a

 28

Craig Wootton, University of Ulster

consequence of the user expecting the system to perform a task for which it has not been

designed. For this reason it is important to devise better strategies for detecting

problems in human-machine dialogues and deal with them gracefully (Carlson et al.

2005). Some strategies, derived from human-human interactions, have been used as the

basis for error recovery, such as engaging the user in a task based sub dialogue to

confirm the system‟s belief of the user‟s intentions, and thereafter treating the error as a

mis-understanding (Skantze 2005).

Error prevention at each stage of dialogue design is paramount, and various dialogue

prompts and strategies should be investigated by the developer to ensure a high number

of errors are prevented at all times. Importantly, the initial prompt of a dialogue system

can prove decisive between a usable dialogue system, and one which leads to many

errors. Research from Raux et al. (2006) supports this by showing a reduction of non-

understanding errors of up to a quarter on a dialogue system used over a year in the

public domain.

2.4 Spoken Dialogue Systems: Advantages

Given the challenges and issues with spoken dialogue systems described so far, is there

a need to replace the traditional graphical interface that has become so widely used?

Graphical interfaces have become very usable and effective due to the many years of

usability studies and evolutionary designs that have taken place since their inception.

However they are not a natural form of interaction, unlike speech. Communicating with

machines in natural, conversational language removes many of the interactive barriers

that inexperienced users currently face. The dialogue manager will be able to assist

with specific problems, with each party collaborating with one another to solve

particular goals.

 29

Craig Wootton, University of Ulster

One of the main benefits of a dialogue interface is that of increased accessibility.

Accessibility is concerned with how „usable‟ or „available‟ software is for users,

particularly those with disabilities, and it is the focus of much effort from the W3

Consortium to ensure that the Internet and web pages are particularly accessible to all

users, despite the disability one may have, be it sight, sound or physical impairment
1
.

One major constraint of a GUI is the requirement of using devices such as keyboard and

mouse to interact with the system, which presents obvious difficulties for those with

disabilities. A VUI (Voice User Interface) removes this need for „hands on‟ interaction

with the computer, and will allow such users to interact freely with the system using

speech. This will also be true for situations when the hands-on approach of graphical

interfaces is unsuitable, for example, with „in-car‟ systems.

Additional benefits include that a user is not required to have special hardware, such as

a computer, to interact with a system, and they do not need to have knowledge of how

to use the graphical interface in order to do so. The combined benefit of these two

considerations is that the only requirement for interacting with a spoken dialogue

system is a microphone and speaker. By replacing website-based front ends to many of

their online services with a dialogue system, a user can now simply ring up and talk to

the computer, performing a variety of tasks. This would be an attractive alternative for

those users who have limited knowledge of technology and graphical interfaces, and

who still wish to interact with computers. Commercially this too has a significant

benefit in providing services to a new market of customers with minimum computing

1 Web Accessibility Initiative (WAI) – see http://www.w3.org/WAI/

http://www.w3.org/WAI/

 30

Craig Wootton, University of Ulster

experience. Dialogue systems utilising a telephone can allow a company to offer their

customers a means of interacting with their services at any time.

As discussed further in Section 2.6, spoken dialogue systems also offer an alternative

means of interaction on mobile devices and small form computers which have graphical

interaction constraints. Providing an opportunity to use speech for input over a less

comfortable and usable method, the usability of mobile computer interfaces can be

enhanced with a spoken dialogue interface, in addition to gains offered for the usability

of traditional graphical interfaces when meeting the needs of different systems and

people.

2.5 Spoken Dialogue Systems: Limitations

There are some drawbacks of dialogue systems when compared to both graphical

interfaces and human-human interaction. Comparisons with graphical interfaces will

be discussed in Section 2.8, however it is also necessary to mention the comparison of

spoken dialogue interfaces with human-human interactions, as these are the benchmark

that spoken dialogue systems are often designed to achieve.

Humans display a far greater level of intuitive thinking when engaging in conversation,

being able to change dynamically their words, phrases and speaking style to adapt to all

different kinds of conversational partner. For example, a person would adapt different

speaking styles when speaking to a parent than a friend. This is the complete opposite

approach to that taken by VoiceXML (see Section 2.9.3) and other implementations of

current dialogue systems, where the system is static. Paths through the system are

fixed, and the interaction is similar for one user to the next, so the interaction style is

independent of the user.

 31

Craig Wootton, University of Ulster

This is also true of dialogue initiative and grounding techniques – all users of a dialogue

system are often presented with the same initiative and grounding strategies throughout

a dialogue system. What would be desirable is a system that can detect if the user is

experienced or a novice, and automatically generate the dialogue based on system or

user initiative. This adaptation to individual users would allow more advice and

guidance to be given to less experienced users, whilst the more experienced users will

be able to use user and mixed initiative to complete the desired task more quickly and

efficiently. The same applies to grounding strategies. Implicit and explicit strategies

have their advantages and disadvantages. By adapting to different users, the system

could present the best strategy.

This lack of adaptation is due to the „static‟ hand coding of dialogues by developers.

Beveridge & Milward (2004) surmise that, although the static approach allows precise

control of what can occur within a dialogue, it is an expensive process in terms of costs

and development effort, especially for complex dialogues, where the number of possible

paths through the dialogue can be in the hundreds of thousands. It also creates fixed

dialogues that are presented to every user, containing no, or very limited, adaptive

dialogue.

An approach to overcome this in known as the „dynamic‟ dialogue system, discussed

further in Section 3.1. Various programming techniques can be utilised to create

dynamic dialogues and prompts during the course of the interaction. However this

approach suffers from its own limitations: it requires a well-defined and structured

representation of the domain knowledge; and they are created purposely for interactions

within that specific domain, reducing their extension into other domains.

 32

Craig Wootton, University of Ulster

2.6 Spoken Dialogue Systems: Multimodal Dialogue Systems

Multimodal dialogue systems are dialogue systems that offer additional modes of input

and output, such as video output, or handwriting recognition; this allows the user to

interact in the most appropriate way best suited for their current environment, and also

allows the presentation of output to be generated in the most appropriate manner

(López-Cózar & Araki 2005). By increasing the number of modalities that a user can

use to interact with a computer, each modality can complement the others to help

deliver a higher degree of confidence for the input and remove a lot of recognition

errors. As summarised by Ringland & Scahill (2003) users can select the most

convenient mode to use for any given circumstance, errors produced in one mode can be

corrected using another mode, and multimodality can help interaction with smaller,

more mobile devices. Furthermore, the inclusion of numerous modalities is

specifically beneficial for mobile devices as users can often find the environment

changing around them, and it is usually the case that input on one modality in the

current environment might not be the best form of input in the next environment.

Multimodality could include any medium from using graphics and text, to more

advanced areas of gestures and emotion recognition and production. This can lead to

extra issues, as inputs from more than one modality need to be fused together, so that

they provide the system with a complete input from the user. For example, if the user is

interacting using multiple modalities, and says “I wish to travel from here to there”

whilst pointing from one place on a map to another, the system needs to fuse together

the inputs for the origin and destination of the journey, using the combination of map

gestures and words spoken. This also presents challenges, as not only does the system

now need to recognise more than one input from the user in a correct manner, but also

 33

Craig Wootton, University of Ulster

provide resolutions to interactions that are contradictory – for example, “I wish to hear

more about the current sports stories” while pointing at a link to provide more

information concerning the ongoing rise in house prices.

The main advantage of multimodal systems is that they can overcome many of the

limitations associated with dialogue systems, such as the limited ability of humans to

process a large amount of information conveyed through voice. By using multimodal

dialogue systems, users can interact with web sites and systems using voice, yet still

benefit from the graphical representation of information to overcome the cognitive load

associated with informational transfer through voice.

Secondly, multimodal systems are seen as advantageous from an error handling

perspective. Sturm & Boves (2005) note three issues concerning errors in a spoken

dialogue system to be error reduction, error detection, and error correction. They

propose that it is in the area of error correction that multimodal systems can really

benefit users, and that, based on a related study (Suhm et al. 2001) multimodal error

correction was indeed faster than unimodal correction by re-speaking. A multimodal

approach can offer problematic interactions an alternative means of correcting speech

recognition errors by simply offering the user an alternative mode of input.

On the other hand small form computers and mobile devices, including PDAs, are

restricted in their input capabilities due to their reduced size. By using speech, users

can make use of speech inputs and not worry about using a reduced keyboard size or

other forms of input.

Additionally, due to the limited processing power available to mobile devices,

traditional speech recognition software usually cannot run efficiently. The challenge is

therefore how to get dialogue technology to run effectively on mobile devices, and

 34

Craig Wootton, University of Ulster

interact with servers if used as part of a distributed system. One solution is to simply do

limited processing on the input signal, and send the unparsed signal to the server via

wireless communications, and use the superior processing power available to the server

to parse the input string (Ayres & Nolan 2006).

One of the problematic errors when designing multimodal interfaces is that different

mobile devices have different input and output capabilities. This is a challenge as the

developer cannot specify an interface with any degree of certainty how it will be

rendered on a certain device, and if the interaction methods will actually be available.

There are standards available for multimodal development, such as X+V (see Section

2.9), or MIRS (Multimodal Interaction and Rendering System), which is a language

from an active research project that aims to overcome these interaction difficulties

(Mueller et al. 2004).

By utilising other mobile technology, such as wireless communications, dialogue

systems on mobile devices are proving to be a very popular research thread. The

benefits of adding a spoken dialogue to mobile computing is being demonstrated by

many active research projects. Lopez-Cozar et al. (2005) have demonstrated a mobile

system where pupils and teachers can request information regarding their studies using

multimodal and wireless technology. This is a novel university system that uses wireless

communication protocols to interact with a back-end database to build up the grammars

for the speech recognition, and also provide information access to the pupils and

teaching staff. Similar mobile spoken multimodal systems that allow the user to access

information are presented in (Bronsted et al. 2005; Chen et al. 2005).

 35

Craig Wootton, University of Ulster

2.7 Spoken Dialogue Systems: Evaluation

A spoken dialogue system, like any new system, must be subject to a thorough process

of testing and evaluation to ensure that all requirements are met, and to achieve a

measure of how usable the system is by its targeted users. The results can allow

developers to enhance the performance of a dialogue system, and identify those areas on

which the effectiveness and satisfaction of the system depend. Quite often these areas

are speech recognition or understanding related, illustrated by preliminary evaluations

of the DI@L-log system which indicated problems with the open ended implementation

of the prompts and grammars. A re-engineered implementation utilising a more

focussed approach to dialogue increased the user satisfaction significantly (Black et al.

2005).

Evaluations of spoken dialogue systems are made somewhat more complicated due to

the interacting nature of the many different components that make up typical spoken

dialogue architectures. Dialogue developers are quite often only interested in the

dialogue aspect of the interaction, and the performance of the dialogue manager in the

overall architecture. However, since the performance of the dialogue manager depends

crucially on the performance of other components, such as the speech recogniser and

text-to-speech synthesiser, users may not be aware of the dialogue management aspect

specifically, and base their judgements on the quality of those components that are the

tangible inputs and outputs in the interaction. Important questions to ask during an

evaluation are what you want to evaluate, how you are going to measure it, and the

meaningfulness of the results.

A number of evaluation techniques and metrics have emerged, many of which are now

standard when evaluating a spoken dialogue system. Two approaches are commonly

 36

Craig Wootton, University of Ulster

used - firstly the system and user behaviour are logged in order to quantify the

performance of the systems and its components, and secondly, the entire system is

evaluated from a user‟s point of view, through questionnaires and interviews (Möller

2005a). This combination of qualitative and quantitative metrics is used to undertake

three different types of evaluation: performance evaluation measures the performance of

the system using quantitative metrics; diagnostic evaluation detects and diagnoses

design and implementation errors; and adequacy evaluation measures how well the

system fits its purposes and meets users needs (Bernsen et al. 1998: 191). Paek extends

the need of well defined evaluation standards so that: an accurate estimation can be

made of how well a system meets the goals of the task; comparative judgements

between systems can be made; factors or components in the system can be improved;

and tradeoffs or correlations between factors can be identified (Paek 2001).

Typical quantitative metrics used, defined as interaction parameters by Möller (2005b),

include the dialogue duration, delay length of user‟s response, number of turns, the

length of the prompts, and word error rate. By recording and analysing many of these

interaction parameters, developers can judge and assess how their dialogue system is

performing, how the system can be optimised, and where re-engineering is needed.

Kamm et al. (1999) however discuss certain issues concerning the reliance on

interaction parameters as a measure of the quality of dialogue, as often these interaction

parameters may contradict one another, leaving developers with the tricky task of

untangling the interactions or correlations between parameters.

Furthermore, due to the interactive nature of dialogue, these interaction parameters do

not always correspond to the most effective user experience (Lamel et al. 2000). They

themselves do not directly measure and record the user‟s judgement of a system, and

 37

Craig Wootton, University of Ulster

importantly their satisfaction of the system. User satisfaction, ease of use, and quality

of output are some of the subjective measures important to developers (Larson et al..

2005). Currently the only method to achieve this is through subjective measures, most

commonly through the use of questionnaires after an interaction with a dialogue system

(Hartikainen et al. 2004). A widely accepted questionnaire to record a range of user‟s

opinions on different aspects of a dialogue interaction is the so called „SASSI‟

questionnaire (Subjective Assessment of Speech System Interfaces) (Hone & Graham

2000, 2001).

PARADISE (PARAdigm for Dialogue System Evaluation) is a generic evaluation

framework that attempts to combine interaction parameters and subjective measures into

a single performance evaluation (Walker et al. 1997). To create the interaction logs,

dialogue corpora must be collected using controlled experiments, after which the user

records their judgements using surveys (Walker et al. 1998). A set of „cost and success‟

factors is then treated as a set of independent factors, and multiple regression is then

applied which measures each factor‟s overall importance in the user‟s satisfaction.

PARADISE then allows the comparison of different dialogue strategies by comparing

weighted judgement scores achieved using the algorithm.

Recent research interest however has seen the prediction of the usability of a spoken

dialogue system from the interaction parameters during testing (Möller et al. 2008). It

is believed there is a correlation between certain parameters and the user‟s satisfaction

of a system, for example, the lower the word error rate of the speech recogniser the

more satisfied the user will be with the system. The rationale of prediction usability is

to help designers in making choices between system versions and lower testing costs at

early phases of development (Möller et al. 2006). Möller et al. shows that the reliability

 38

Craig Wootton, University of Ulster

of prediction models relies greatly on the reliability of the interaction parameter used as

input to the models (Möller et al. 2007). Callejas & López-Cózar (2008) argue however

that user satisfaction is dependent also upon the dialogue management strategy used,

and not only the interaction parameters. This suggests that evaluation methods

themselves need to be tailored specifically to the type of interactions being analysed.

2.8 Spoken Dialogue Systems: Usability Considerations

An important aspect of any system‟s development is that of usability. A user‟s

satisfaction with a system often lies not in the technical achievements of its

implementation, but on how well they can interact with the system. Usability can be

defined in terms of three dimensions: the extent of its effectiveness in doing typical

tasks, the efficiency with which the task can be done, and the satisfaction of the user

when carrying out the task (ISO 9241-11, 1998). As spoken dialogue systems are a

new and unfamiliar interface for many users, it is important for dialogue developers to

understand usability, how users currently interact with graphical interfaces, and then

consider how interacting with the same task will differ through a dialogue interface

(Dybkjær 2005).

Since the evolution of the graphical browser, usability engineering has become an

integral aspect of system development, with suitable standards devised after many years

of usability evaluations. Nielsen (1993) defines 5 different considerations that must be

evaluated to give a measure of the usability of a system. These are learnability,

efficiency, memorability, errors and satisfaction, typically measured by having a

number of test users interact with the system to perform a number of set tasks. Virzi

(1992) and Nielsen & Landauer (1993) have both published influential articles on the

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-3Y9RCX5-B&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a3a3594714ca44aac30ca82c8a9d518e#bb1

 39

Craig Wootton, University of Ulster

topic of sample sizes for usability testing; with qualitative results collected using data

from questionnaires and interviews.

As a consequence of many years of usability studies the graphical interface has evolved

from an unnatural paradigm for computer interaction into an effective and satisfactory

means for communication with computers. Large bodies of text can be read quickly,

suitable icons and graphics represent an appropriate action, the available functionality of

a piece of software can be visually inspected by the user, which can be restricted to only

the correct options in a given interaction state, and inputs from the user can be easily

validated and verified, using constructs such as drop down boxes and JavaScript.

However, the mere presence of learnability as a consideration of usability illustrates that

there is a learning curve for users to make use of a graphical interface, and graphical

interfaces on mobile devices have yet to reach the usability standards of home

computers.

The usability considerations of spoken dialogue systems differ from those of graphical

interfaces due to the interface not being evident or available for inspection to the user

before interaction. Consequently the user may not be aware of the functionality of the

dialogue system or how to interact with the system. This can cause further issues for

the speech recognition engine, the constraints of which are not obvious to the user.

Guidelines to prevent this have been proposed by Suhm (2000), most notably to use the

system‟s prompts effectively to constrain the user‟s input to the system‟s speech

recognition grammar, making sure that any keywords to be used are easily recognised

and not confusable.

Furthermore, whereas graphical interfaces rely on control through screen, keyboard and

mouse, spoken dialogue systems use speech which is a perceptually transient rather than

 40

Craig Wootton, University of Ulster

static interface (Dybkjaer & Bernsen 2001). This means that the user must pick up the

outputted information by the system the moment it has been provided, or miss it

altogether. Human factors and psychological understanding play an important role here

ensuring that the user is not overloaded cognitively with information that cannot be

perceived visually. Given that humans can remember only five to nine things for

around twenty seconds in their working or short term memory, dialogue engineers must

be sure to remain within these limits when designing verbal menus and prompts

(Weinschenk & Barker 2000).

Although there is potential for a dialogue system to offer a more natural interface than a

graphical interface, the many years of usability study and evolution that graphical

interfaces have over their dialogue counterparts means that usability issues have been

explored more widely and so the interfaces are more mature. For both task based and

information based interactions, graphical interfaces offer a very high standard of

satisfactory interface. Graphical browsers are very usable for reading large bodies of

text, search results can be meaningfully displayed in various forms for user

interpretation, data input is quite acceptable through the use of a keyboard, the detection

and correction of errors is quite effective and the graphical interface performs

independently of current surroundings. However, in dialogue systems in the domain of

online browsing, large bodies of text take more time to speak out, search results are

difficult to output because of the linear nature of speech, data input can prove

troublesome due to speech recognition and language understanding errors, errors can be

problematic to detect and correct, and lastly the user must interact in a quiet

environment.

 41

Craig Wootton, University of Ulster

2.9 Enabling technologies

As stated previously, typical spoken dialogue architectures utilise various technologies

from numerous areas of computing. Enabling technologies for a dialogue manager are

themselves vast and varied, and one can further observe that there is a difference in how

dialogue managers are implemented in industry for commercial use as opposed to the

laboratory for academic research. Industry implementations are usually found to be

more standards based, as defined by the W3C „Voice Browser‟ group (Froumentin &

Ashimura 2006). Formed in 1999 by the World Wide Web Consortium (W3C)
2
 to

promote the standardisation and specification of voice technologies, it aims to utilise

web technologies to further dialogue systems. Entire spoken dialogue systems can be

realised using the implementations developed by the Voice Browser group, which

include the specifications such as

VoiceXML
3
, Speech Recognition Grammar Specification

4
 (SRGS) and Speech

Synthesis Mark-up Language
5
 (SSML), which form part of the W3C Speech Interface

Framework.

However, it is usually a trend with research groups to develop and promote their own

specifications. This can lead to a gap forming between the two parties as sometimes,

but not always, the research is far removed from the standards, so not of appeal to

industry. Sometime research groups themselves are unaware of what the actual

requirements from industry are for commercial dialogue systems.

2 http://www.w3.org
3 http://www.w3.org/TR/voicexml21/
4 http://www.w3.org/TR/speech-grammar/
5 http://www.w3.org/TR/speech-synthesis/

 42

Craig Wootton, University of Ulster

Pieraccini & Huerta (2005) develops such thoughts highlighting that industry and

research often have two, quite conflicting views on how spoken dialogue systems

should interact with the user. Larson on the other hand, noted as being a great „bridge‟

between these two divided camps, working foremost as part of a large industry

corporation, but also being the co-chair of the W3C Voice Browser group, counters this

argument by stating that research is the first step in the life cycle of a new technology,

eventually leading to its standardisation (Larson 2005a). Larson does have a good point

here, as most of the technologies used today often start out as research projects in the

laboratory. Take the Hyper Text Transfer Protocol (HTTP), for example. However

one must further question this life cycle, as not all research technologies can be adapted

as standards, and if they were, then what would the point of standards be in the first

place.

Nevertheless, standards have been specified and developed, making up a suite of

applications known as the W3C Speech Interface Framework. The standards devised by

the W3C Voice Browser group are all applications of the language known as XML. It

is these standards that will be used for development of the proposed system. Before

reviewing the technologies that enable dialogue however, one must have an appreciation

of XML, what it is capable of. Other related technologies will then be briefly

introduced.

2.9.1 Enabling Technologies: XML

XML was first introduced by W3C on the 10
th

 February 1998 (Thompson & le Hegaret

2005). Introduced to complement HyperText Mark-up Language (HTML) as a means

of specifying websites, XML is primarily concerned with the structure of data, as

opposed to the layout and presentation of data. This was seen as a much needed

 43

Craig Wootton, University of Ulster

requirement for the Internet, as HTML was becoming very unorganised and informal, as

manufacturers of different web browsers would implement their own different

specifications of HTML, leading to incompatibilities between different browsers.

HTML developers themselves were also often quite „lazy‟ with HTML, as it did not

require precise, or strict, formal coding for it to work.

The birth of the Web was very chaotic, and the non-standard modifications and

inconsistencies of HTML reflected that chaos (Morrison 2002). XML was introduced

therefore to help formalise HTML, and apply structure to data, something which HTML

is not that particularly good at. HTML was more equipped to handle the presentation

whereas XML is a simple means of describing the data or content. There are no

presentation or layout concerns included with XML - it is described as a meta-language,

a language that describes other languages. This is one of XML‟s advantages, there is no

limit on what it can be used for, it is truly extensible. Another important goal of the

XML language was for the need to create well structured and formalised XML

documents for the browser to parse them correctly. This would be moving away from

the forgiving days of HTML, and one of the original design goals of XML calls for this

explicitly (Bray et al. 2006).

With XML being used to describe data structure, how can one use this technology to

present this data? For this to be done, some form of parsing or processing must be

done, to transform the XML into another presentation language, such as HTML. This is

another great advantage of XML, that the data structure and presentation are separated,

unlike its predecessor HTML. Because the structure and presentation are separate, the

same structure can be transformed into more than one different presentation medium,

simply by changing the template that is doing the transforming.

 44

Craig Wootton, University of Ulster

In conjunction with XML, XSLT (eXtensible Stylesheet Language Transformations)

was developed to transform an XML document into another form. XSLT 1.0 appeared

as a W3C recommendation first in November 1999 (Fitzgerald 2004). An XSLT

document specifies a „Stylesheet‟ that can transfer an XML document into another

language, for example HTML, PDF, Database, or VoiceXML (see Section 2.9.3).

XSLT is a very powerful language that allows the developer to do lots of interesting

things. An XSLT document could transform the content held in a XML structure into a

HTML table, neatly showing the information contained with the XML document.

However, if the same developer wishes to use the same content, but this time for display

on a mobile, another Stylesheet can be created, this time displaying the essential data in

a more efficient way for viewing on a smaller screen. It is clear to see the benefits of

separating out the presentation knowledge from the content knowledge.

2.9.2 Enabling Technologies: XML Applications

One of the most popular and most used applications born from the introduction of XML

meta-language is „RSS‟. RSS, or Really Simple Syndicate, was first introduced in

March 1999 as RDF Site Summary (Resource Descriptive Framework), by Dan Libby

of Netscape (Anonymous 2006). RSS is a pure text format, and doesn't contain

information about how a document should be presented. It simply uses XML to

semantically distinguish information, which can then be transformed into whatever way

appropriate (Wittenbrink 2005).

 45

Craig Wootton, University of Ulster

RSS allows companies to produce „feeds‟ information, which contain just the content.

For example the BBC makes the current world news stories available as an RSS feed
6
.

As it is just the content that is included with an RSS feed, users rely on news or feed

readers to render the RSS feed, and display it in a meaningful form. This allows the

user to get all the RSS feeds that they are interested in delivered into the same software

package, so that they do not have to navigate around many sites on the World Wide

Web. Likewise, it allows web developers not to worry if the user is viewing the content

on a personal computer or a mobile phone, as it is the RSS feeder that will be displaying

the contents on the screen in an appropriate way, specific for the device that is currently

in use.

RSS feeds are just one successful web application that has been made possible due to

the emergence and continued use of XML. Similar technologies are „web services‟,

which allow different applications to communicate with one another using the Internet.

A service, such as SOAP, or REST, defines a standard specification, using XML, of

requests and responses for data. So a developer, for example, could make a request for

information from a weather provider, and include the information on his/her web site.

This is similar to how APIs (Application Programming Interface) operate. APIs are

created by web developers and companies to allow individuals to interact with their

systems (Zirkle 2003) APIs are commonly available for many popular web sites, such

as eBay
7
, Wikipedia

8
 and the BBC

9
. The user can package the information they request

6 feed://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml

7 http://www.ebay.co.uk

8 http://www.wikipedia.org

9 http://www.bbc.co.uk

 46

Craig Wootton, University of Ulster

into an API, for example a book search on Amazon.co.uk
10

. The results then come back

as an API response, usually in an XML based format. The user can then render these

results and display them however they wish.

Mentioned here are just some of the web technologies available for developers to use to

build a wide variety of sites, and have also been used to provide the foundation for

many dialogue systems.

2.9.3 Enabling Technologies: Voice technologies

Whilst developing the main dialogue specification, VoiceXML (Voice eXtensible

Markup Language), the main concern for the W3C Voice Browser group was providing

interactions with existing web technologies, including the World Wide Web (Boyer et

al. 2000). The Voice XML specification was essential to making Internet content and

information accessible via voice and phone (Hocek & Cuddihy 2003; Miller 2002).

VoiceXML applications are not seen as replacement interfaces to the Internet, but seek

to offer additional access to the same content through a highly accessible medium - the

telephone.

VoiceXML is an XML-based mark-up language for distributed voice application first

published in 2000, much as HTML is a mark-up language for distributed visual

applications (Sharma & Kunis 2002). The similarities with HTML are obvious -

firstly, the workflow of VoiceXML interaction is similar as well to the HTML

workflow. With VoiceXML, a voice browser is required to fetch the VoiceXML

documents from the server, interpret them, verbalise the contents for the caller, and then

accept voice input from the user (Larson 2003).

10 http://www.amazon.co.uk

 47

Craig Wootton, University of Ulster

Secondly, VoiceXML allows dialogue designers to develop a frame based dialogue (see

Section 2.3) by specifying a form representation of the dialogue, containing fields that

must be filled with values elicited by the user. This is comparable to the HTML

paradigm of forms and fields that the user can select values from or enter values into.

This similar approach is appropriate for web developers who are familiar with HTML,

but also on a conceptual level, is quite fitting for end users, as they may already have a

visualisation of the web based form for that interaction based on prior experience.

Whereas HTML forms contain fields, each of which usually has a question displayed

graphically, VoiceXML forms contains fields with <prompts>, which specify the

question to be asked to the user. Likewise, HTML has an associated area for the user to

enter a value or select from a list of given values, VoiceXML fields have a <grammar>

containing the allowable answers that the user can submit.

VoiceXML has some major drawbacks however. Similar to that of web programming,

where the content itself is mixed with the syntax of HTML, VoiceXML also mixes both

the dialogue and domain knowledge. This is a concern mainly for developers as code

can become unmanageable and difficult to maintain, and with regard to adaptive

dialogue systems, as dialogue cannot be adapted to users if the domain knowledge is

contained within the dialogue. To overcome this, like XML and XSLT, it is common

with researchers to separate the domain and dialogue knowledge from one another in

the form of a dynamic dialogue system (see Section 3.1).

Additionally, although the commercial potential of VoiceXML has been demonstrated

with a number of products deployed based on this standard, the specification has not

been produced for research purposes, and lacks some of the more advanced features of

dialogue that are appealing to academic researchers. Integration with natural language

 48

Craig Wootton, University of Ulster

understanding and generation components for more advanced language parsing and

interaction, further complicated by incompatibilities of language understanding formats

and VoiceXML, further adds to the limiting appeal of VoiceXML to academic

researchers (Mittendorfer et al. 2001).

Furthermore, due to the large operating constraints of system resources and the number

of components required to run a VoiceXML system, such as a web server, VoiceXML

Interpreter, speech recognition and TTS engines, ECMAScript interpreter and

associated technologies, VoiceXML platforms are normally implemented using a three

tier client server architecture, and not installed on embedded devices, not making

VoiceXML a desirable solution for such devices (Bühler & Hamerich 2005). However,

due to the increasing use of small form computers, with a limited screen size compared

to traditional computers, there is a new found motivation to incorporate VoiceXML

technology pervasive devices such as PDAs, smart phones and tablet PCs (McTear

2004b).

To realise multimodal dialogues, an additional set of tags has been made available to

VXML, and this is the basis of the X+V
11

 specification. An acronym for

XHTML+VoiceXML, X+V is a specification that allows the creation of a multimodal

dialogue by incorporating a smaller set of VoiceXML tags into the XHTML

specification. As forms are loaded into the browser, associated VoiceXML <prompts>

will be played as focus progresses from input to input. A compatible browser is

required, such as Opera
12

, to render the X+V pages correctly.

11 http://www.w3.org/TR/xhtml+voice/

12 http://www.opera.com/

 49

Craig Wootton, University of Ulster

There is a competitor, however to the X+V‟s specification. SALT, or Speech

Application Language Tags, extends existing Web mark-up languages such as XHTML

and XML to also enable multimodal and telephony access to the Web. Introduced in

2001 and maintained by the SALT forum
13

, the SALT 1.0 specification is also under

consideration of the W3C to be made a development standard (Platt 2004).

Both specifications have their respective advantages and disadvantages – X+V utilises

the accepted and well developed VoiceXML foundation, but multimodality is provided

more as an add on solution rather than being core, whereas SALT has had multimodal

considerations core to its development, but is not open source and does require an

associated proprietary framework to execute.

2.10 Spoken Dialogue Systems: Advanced Architectures

The spoken dialogue architecture presented in Section 2.2 is typical of many

commercial and academic systems, providing the necessary framework for spoken

dialogue interaction between human and machine. Common tasks, such as: information

retrieval regarding orders or account details; bookings of various items such as concert

tickets or flight tickets; or transactions that allow customers to pay for bills and

invoices, can be fully supported using this architecture. However, as dialogue research

has progressed, more advanced and flexible architectures have been required to realise

additional, more advanced functionality. For example, the TRIPS system incorporates

components that use artificial intelligence technologies such as planning, allowing more

advanced interactions where the dialogue agent collaboratively interacts with the user to

solve a problem in the domain of disaster management (Allen et al. 2001).

13 http://www.saltforum.org/

 50

Craig Wootton, University of Ulster

Numerous architectures were investigated during the literature exploration, and only a

selected few will be presented here. Specifically, architectures and mechanisms were

identified that handle multiple tasks or domains during an interaction. The Queen‟s

Communicator (O‟ Neill et al. 2005), JASPIS (Turunen 2004) and CONVERSE

(Batacharia et al. 1999) all use a form of polling agent or evaluator to weight different

options available and select the most appropriate one for the current interaction, while

RAVENCLAW (Raux et al. 2005) reinforces the method of separating the task

knowledge and dialogue knowledge to promote extensibility and reuse with different

task specifications and domains.

2.10.1 Advanced Architectures: Queen’s Communicator

Resulting from research based at Queen‟s University, Belfast, the Queen‟s

Communicator is an evolution of the DARPA Communicator. The goal of the original

DARPA Communicator was to develop robust spoken dialogue systems that support

complex, conversational interfaces. It had been developed to allow users to call into the

system using a phone, and enquire about a number of travel options and itineraries, such

as flights, hotels, and car rentals. The DARPA Communicator architecture used a „hub-

and-spoke‟ architecture, as shown in Figure 2.2, composed of a number of servers that

Figure 2.2: DARPA Architecture

(Pellom et al. 2001)

 51

Craig Wootton, University of Ulster

interact with each other through the DARPA Hub (Pellom et al. 2000). The Queen‟s

Communicator (QC) is an evolution of this system, replacing the dialogue manager with

a Java based Object Oriented (OO) version. Based on a client-server paradigm, the

architecture is presented as Figure 2.3.

The attraction of object-orientation is that it can be used to separate generic dialogue

behaviour from domain-specific behaviour (O‟ Neill et al. 2005). By implementing the

dialogue manager (shown in Figure 2.4) in an OO fashion, the Queen‟s Communicator

allows the advantages associated with OO programming to be brought to the domain of

spoken dialogue systems, such as inheritance, extensibility and encapsulation.

Implemented as a series of agents (specialised objects performing a particular task)

organised as an object hierarchy, a key agent of the dialogue manager is the domain

Figure 2.3: Queen's Communicator Architecture

(Hanna et al. 2007)

 52

Craig Wootton, University of Ulster

spotter (McTear et al. 2005). For example, the Event Expert contains general domain

knowledge regarding event based dialogues, such as show date and number of adult

tickets. However, experts lower in the hierarchy contain more specific rules associated

with the domain represented, such as the Cinema Expert. Each domain that the QC can

engage with in dialogue has its own expert and when the user engages the QC in

dialogue, it is the task of the domain spotter to decide which of the multiple domain

experts should be given control of the dialogue. As each agent is implemented as an

agent with a specific task, encapsulation is promoted by confining all the methods and

variables related to that agent within the object. This agent acts independently of other

agents, and so they are unaffected by changes or alterations to its operation, and vice

versa. This also promotes the extensibility of the system, as agents can simply be

plugged in or removed from the system without affecting the operation of the other

Figure 2.4: Queen's Communicator Dialogue Manager

(Hanna et al. 2005)

 53

Craig Wootton, University of Ulster

agents. In real world terms, one could simply develop the rules required for the

operation for a concert ticket domain expert, for example. This will then be available to

the domain spotter during dialogues for it to allow requests in the domain of concert

tickets.

Lastly, and arguably the most appealing for dialogue developers, are the benefits that

inheritance has to offer. As the agents are developed as an object hierarchy, higher

level dialogue management can be included at the upper most parent level. The domain

experts themselves are at the lowest level of the hierarchy. This allows them to inherit

all the dialogue management rules as the system is extended, so these same rules do not

need to be programmed into each domain expert.

The dialogue flow can also be altered quite easily as the developer simply needs to

change the appropriate rules in the high level dialogue manager, as these changes will

then be inherited by all the child domain experts. There are further classifications

within the hierarchy providing an even greater level of abstraction for the developer.

For example, the cinema and theatre experts are both children of the event expert. This

avoids duplication of rules amongst children objects and provides an easy mechanism to

alter the dialogue should the need arise. The separation of dialogue knowledge from the

domain knowledge removes the issues and problems associated with how VoiceXML

mixes the two together (see Section 2.9.3). This allows the developer to control the

domain and the dialogue separately, providing a more adaptable and dynamic approach

to dialogue. This approach of domain spotting can also be found in work by Lee et al.,

in their Unified Multi-domain Dialogue Manager, however this architecture has yet to

be evaluated in terms of extension and reuse (Lee et al. 2006).

 54

Craig Wootton, University of Ulster

2.10.2 Advanced Architectures: JASPIS Architecture

Similar to the QC, JASPIS is based on agents, each of which has a specific job to do

(Turunen 2004). Shown in Figure 2.5, these agents are implemented in a modular and

distributed system structure, an adaptive interaction coordination model and a shared

system context (Turunen et al. 2004). Similar to the QC, evaluators play the part of the

domain spotter concept, which selects the best agent most capable of performing the

requested operation. The JASPIS architecture also includes managers, which are used

to coordinate agents and evaluators.

Adaptive dialogues are possible by selecting the agent that is most appropriate for the

current task. This is achievable as agents can be used to model different interaction

strategies for the same task (Jokinen et al. 2002). This allows the evaluators to select

the most appropriate initiative and grounding strategy, and also presentation mediums,

based on its knowledge of the user and the dialogue so far.

Extension of the system is supported once again by the encapsulation of the agents,

implemented as small software functions that perform a very specific task. JASPIS
1

Figure 2.5: JASPIS Architecture

 55

Craig Wootton, University of Ulster

extends the original architecture by implementing a distributed dialogue architecture

supporting the realisation of mobile spoken dialogue systems (Turunen et al. 2005).

2.10.3 Advanced Architectures: CONVERSE Architecture

Queen‟s Communicator and JASPIS have been shown to have two features in common:

that they are both architectures created for task based applications; and that they both

rely on a specialist component for weighting and choosing between more than one

possible way to solve a task. In the case of the Queen‟s Communicator, a domain

spotter is used to decide on the specific domain expert to solve the current interaction,

and evaluators are used in JASPIS to decide on the specific agent to best handle the

interaction.

Whereas the Queen‟s Communicator and JASPIS use a top-down approach to this

decision making, CONVERSE provides an alternative, bottom up approach of using

multi dialogue agents, known as Action Modules (Batacharia et al. 1999). The

architecture of CONVERSE is shown in Figure 2.6. Comparable to the aforementioned

domain spotter and evaluators is the Where-To-Go module of the CONVERSE

architecture. However, in contrast to these modules, Where-To-Go does not apply

weighting functions to its children modules to decide the most appropriate one. In

CONVERSE it is the job of the Action Modules themselves to apply for their chance to

handle the current interaction, similar to the analogy of an auction, where the Action

Modules bid for their chance to handle the interaction based on the information they

have of the situation, and the Where-To-Go module plays the part of the auctioneer,

awarding the highest bidding module the opportunity to handle the interaction once all

bidding has ceased.

 56

Craig Wootton, University of Ulster

2.10.4 Advanced Architectures: RAVENCLAW Architecture

The architectures discussed so far have been used to realise entire spoken dialogue

systems. RavenClaw however is not an architecture for a system, but for a dialogue

manager specifically. It is a task-independent dialogue engine that carries out a

dialogue according to a given task specification (Raux et al. 2005). As introduced in the

next section, there is a need to separate domain knowledge from dialogue knowledge,

and RavenClaw includes a clear separation between task and discourse behaviour

specification, allowing the rapid development of dialogue management components for

complex, goal-oriented dialogue systems (Bohus & Rudnicky 2003). This is shown in

Figure 2.7, where the domain knowledge is represented as a series of hierarchical

Figure 2.6: CONVERSE Architecture

 57

Craig Wootton, University of Ulster

objects, allowing reuse for different systems. By separating the task, or domain rules,

from the dialogue knowledge, extensibility and reuse are encouraged by reusing the

same dialogue knowledge in different domains, demonstrated by the use of RavenClaw

in numerous dialogue systems, such as Let‟s Go! (Raux et al. 2003), ConQuest (Bohus

et al. 2007), and RoomLine (Bohus & Rudnicky 2005b).

2.10.5 Advanced Architectures: Research Issues

Advanced features and aspects of spoken dialogue systems need to be realised by an

appropriate system architecture. The aims, objectives and the specification of the

dialogue system to be implemented should be clearly and fully stated, so that a relevant

architecture that will accommodate all the required functionality can be conceptualised.

This research aims to further explore dialogue interfaces for browsing online content,

and the gaps and limitations of current research are translated into well defined system

requirements and described in Chapter 4.

One requirement of VoiceBrowse is that it should be capable of interacting across

multiple domains and content types. The Queen‟s Communicator and the JASPIS

architecture both cater for this functionality. In the Queen‟s Communicator, the

Domain Spotter accepts the user‟s query as its input, and matches this to a suitable

Expert that can handle the interaction, for example, an Accommodation Expert if the

Figure 2.7: RavenClaw Dialogue Manager in RoomLine

 58

Craig Wootton, University of Ulster

query concerned a hotel booking. In JASPIS, evaluators assess the current interaction

and choose the most appropriate agent to continue, promoting adaptability within the

multimodal dialogue architecture. Agents here are interactive elements that have a

specific job to do, such as speech recognition, gesture capture, graphic generation or

confirmation handling. This allows the switching of modes for input and output, and

other dialogue features such as initiative, so that the system can adapt itself based on its

current environment and user. The CONVERSE system has a similar mechanism, but is

based upon an auctioneering approach, where each action module bids for their chance

to handle the interaction based upon its belief of how well suited it is to do so.

In the case of all three mentioned architectures, the agents or classes handling the

interactions specific to a domain or dialogue feature have been created or developed

specifically for use in that architecture. This however would not be feasible for a

generic dialogue system since each potential website would require its own agent or

class to be created with its own knowledge. Moreover, the developer would need to

anticipate which websites would be of interest to the user; and effort would be required

to translate each website into the particular representation of knowledge used in the

specialised agents or classes. Therefore an alternative, novel solution must be

developed that will allow the inclusion of many different web sites, with many different

content types and knowledge representations, that will dynamically change and evolve

during runtime.

Architectures, however, are merely a framework that enables the system to produce the

dialogue. It is clear that, for dialogue to occur opportunistically, and to be different

with each interaction and for each user, as in the case of browsing the Web through

voice, this has to be done dynamically.

 59

Craig Wootton, University of Ulster

2.11 Summary

Research in the area of spoken dialogue systems and, in particular, their potential „real-

world‟ applications, has attracted increased attention in recent years. This interest in

„real‟ systems and their growing use by the public has led to a new awareness of the

problems associated with such systems, and a continuous striving towards realising true

intelligent systems (Carlson et al. 2005). The inclusion of components such as dialogue

management and language understanding set spoken dialogue systems apart from other

types of speech system, many of which simply recognise the user‟s words without

understanding.

Spoken dialogue systems can offer many advantages to both end-users and also

industrial companies, but are still a relatively new technology in primitive form. The

general public still have a high expectation of what a dialogue system is capable of, and

do not appreciate the realistic capabilities of current dialogue systems. Usability is

therefore paramount, and due consideration must be given to meeting the requirements

and needs of different users that will interact with such a system. There are notable

differences between the usability of a spoken dialogue system when compared to a

Graphical Browser, and these must be taken into consideration when designing a spoken

dialogue system. Available mechanisms and measurements for evaluating spoken

dialogue systems have also been included, and will become of use after the

implementation.

Current technologies have also been reviewed, followed by a discussion of more

advanced architectures found in research. Chapter 3 reviews more advanced aspects of

dialogue systems that are relevant to this dissertation and identifies shortcomings in

current research that need to be addressed.

 60

Craig Wootton, University of Ulster

Chapter 3: Advanced Dialogue Research

The following chapter extends the foundations of dialogue systems presented previously

by introducing more advanced features currently investigated in research. Specifically,

the area of dynamic dialogue will be explored, including systems created using both

structured and unstructured data. The categorisation of dynamic dialogue systems is

done so in this way as the data VoiceBrowse will be required to access can be

distinguished by its structure. Brief discussions on adaptive dialogue and information

retrieval follow, as techniques and insights in both these areas have been utilised during

the research, although in a less significant way. Research gaps and ongoing issues will

be presented throughout and summarised at the conclusion of the chapter, including

shortcomings which will be used to identify the contribution and functionality of

VoiceBrowse.

3.1 Spoken Dialogue Systems: Dynamic Dialogue Systems

The „dynamic‟ creation of spoken dialogue systems refers to the automatic creation of

dialogue as opposed to being hand crafted by the developer. Two distinctions can be

made between dialogue systems: where the entire dialogue system has been created

dynamically; or where the system is created to be dynamic in nature, such as prompts

and grammars created „on-the-fly‟ as the dialogue evolves. Each type presents its own

benefits.

First, any system that can be produced automatically with minimal development effort

is attractive and desirable in terms of effort and resources required. Commercially, the

development of any new IT solution is usually driven by development costs; an

organisation will usually want the best program developed to meet their own

 61

Craig Wootton, University of Ulster

requirements, and at the lowest cost available. To make spoken dialogue systems

attractive therefore, the development costs and effort must be minimal, it must be

effective for the customer, and integrate seamlessly into existing computer systems. It

is for this reason that dynamically created dialogue systems would have real commercial

value and prove very advantageous for companies. Companies will already have their

own IT infrastructure, both internally, and externally facing the customer side, such as

the e-commerce website allowing the user to books flights or hotels online. One can

deduce therefore that the infrastructure will include systems such as networks, servers,

and well formed databases. To reduce development costs, and avoid re-inventing the

wheel, it would be of benefit if a spoken dialogue system could be developed using this

existing infra-structure. This corresponds to the first type of dynamic dialogue system,

where the system in its entirety is created automatically from existing structures.

Secondly, if dialogue can be produced dynamically during runtime, then this removes

problems associated with static dialogues, as discussed in Section 2.5. The contents of

prompts can be varied and specific for each user, real time data structures, such as live

commercial databases, can be used to provide information to users, and the dialogue

does not have to follow a set path, but can evolve uniquely for each user. This

corresponds to the second type of dynamic dialogue, where the system has been created

to evolve dynamically during runtime.

In static dialogue systems, the domain knowledge is incorporated into the dialogue

specification. Separating the domain from the dialogue knowledge however allows the

dialogue manager to select the appropriate knowledge required for the dialogue, and to

dynamically create the dialogue, either as one whole complete dialogue, or as it

progresses.

 62

Craig Wootton, University of Ulster

This knowledge can be represented as a structured entity, such as a database or a XML

representation, or alternatively, it can be in an unstructured form, such as simple text or

content held online. Much of the work in this area of dynamic dialogues has focused on

creating a good representation of the domain knowledge that is both accessible and

meaningful to the dialogue manager. If this is created specifically for a dialogue

manager, it removes complexities associated with understanding and retrieving

information from knowledge sources not created for use with a dialogue manager, as in

the case of relying on unstructured online content. Related research relying upon well

structured domain knowledge to realise dynamic dialogue, such as the GEMINI and

AMITíES systems or other work based on XML structures or ontologies, is presented

below in Section 3.1.1.

However, a well defined and specifically structured domain representation is not always

possible, as in the case of online content that is stored across multiple web sites.

Different web sites will have different structures to one another, and how a dialogue

manager extracts information from one will be different to the method used for

extracting information from another. In this situation, it is commonly the case that

specific web sites are used so that the site structure can be made available to the

dialogue manager during development. A discussion of such systems is presented

below in Section 3.1.2

3.1.1 Dynamic Dialogue Systems: Utilising Structured Content

GEMINI (Generic Environment for Multilingual Interactive Natural Interface), an EC

funded research project, is a dynamic dialogue system of the former type which creates

an entire dialogue system from existing infrastructure. Its foremost goal is to produce

multimodal and multilingual dialogue interfaces to databases with a minimum amount

 63

Craig Wootton, University of Ulster

of human effort (Hamerich et al. 2003). Given a database structure, access to it, and a

description of the requests that are allowable from the user, GEMINI should be able to

automatically generate the dialogue scripts to run the service (Hamerich et al. 2004b).

A novel feature of GEMINI is the language that was developed to allow this semi-

automatic creation of dialogue systems, GDialogXML (Schubert & Hamerich 2005).

GDialogXML specifies a dialogue using an XML based language, which is both

modality and language independent, but allows the representation of the entire dialogue,

from dialogue flow, to data and back-end modelling, and even user modelling. This

specification is then turned into VoiceXML and XHTML realising multimodal

dialogues. However, modalities are not currently fused together, and have to be run

separately, so systems produced by GEMINI are not multimodal in the strictest sense

(D'Haro et al. 2006). The system can reuse generic dialogue components in future

systems to speed up the development time even more (Hamerich et al. 2004a).

AMITíES (Hardy et al. 2006) is another system that produces just the dialogue based on

data driven techniques and existing data structures. Similar to the Queen‟s

Communicator, it is based upon the DARPA Communicator architecture (see Section

2.10) and the dialogue manager and language understanding is automatically created,

whether for a financial system or a travel system. To provide structure to the system, a

corpus of annotated data at both the functional layer and semantic layer is required
14

.

However, a common problem of data driven techniques includes the necessity of a large

annotated corpus for modelling the interaction and testing. DialogStudio is a

framework proposal for building data driven dialogue systems, attempting to overcome

14 Refer to (Hardy et al. 2003) for information regarding the annotating of functional and semantic layers
using DAMSL and XDML

 64

Craig Wootton, University of Ulster

this issue. It has been evaluated with a certain degree of success in three different

domains (electronic program guide, immigrant simulation domain and weather

information domain), but its generic effectiveness remains to be tested as a framework

for building dialogue systems in other domains (Jung et al. 2007).

These systems have been of the former type of dynamic dialogue system, where the

entire dialogue system has been created from structured content. Other research

attempts to realise dynamic dialogue of the form that evolves „on-the-fly‟ as the

dialogue progresses, using structures such as databases and ontologies (Beveridge &

Milward 2003; Montoro et al. 2004). By utilising an ontology to represent devices in a

smart domain, Montoro et al. have produced a system that can automatically create the

dialogue to interact with such devices through voice. By automatically creating the

dialogue based on the XML specification of the environment, new devices can be added

and removed, and the dialogue updated automatically. Milward & Beveridge (2003)

have used an ontology to a similar effect, this time in the domain of medical knowledge.

Here, a medical ontology has been produced in the area of breast cancer, allowing the

users to question the domain knowledge about this area. Using the ontology, the system

can relate terms and concepts - for example if the user responds “There is some

distortion”, the system can relate the term „distortion‟ to various other concepts in the

ontology. Here the concept was human skin change, so the ontology can be searched to

find a concept which is related to skin change and for which „distortion‟ is a term.

By using a structured domain source, dialogue developers can utilise scripts to access

the content using associated query languages in a similar manner to web technologies

and scripting. For most task based dialogues following a finite state or frame based

dialogue, the required inputs to a query on the domain knowledge are mapped onto

 65

Craig Wootton, University of Ulster

distinctive stages of the dialogue. Dynamic dialogues therefore become more

complicated if either of these two elements do not confirm to this approach, where

either the domain knowledge is not of a well defined structure, and therefore cannot be

queried easily, or the dialogue is of a type which does not follow a set path to complete

a distinct task, such as a conversational, narrative form of dialogue. For the latter

complication, Ritel (Figure 3.1) integrates spoken language dialogue technology with

open-domain informational retrieval to allow a dialogue interface to a question

answering system (Rosset et al. 2006). Based on information retrieval techniques, the

dialogue interfaces with a specific collection of documents that are pre-processed and

prepared in an appropriate manner for question answering. With the addition of more

sophisticated language understanding techniques, dialogues that do not follow a set path

or pattern become both manageable and feasible. However, dynamic dialogues systems

relying on an unstructured knowledge base present more complicated problems.

Figure 3.1: Ritel Architecture

 66

Craig Wootton, University of Ulster

3.1.2 Dynamic Dialogue Systems: Utilising Unstructured Online Content

One application area that promises great potential for a spoken dialogue system is

interfacing with the World Wide Web, recognised by over 14 years of research in

making the World Wide Web audible, Raman (1998) is a publication of research

completed previously in 1994, not long after the birth of the World Wide Web itself.

Aural Cascaded Style Sheets (Raman 1997b) aimed to work alongside Cascading Style

Sheets (CSS), used by HTML developers, to output web page text in audio form.

Although not dialogue in the true sense, it is the first documented case of providing an

alternative interface to the graphical interface through speech (Raman 1997a).

Generally spoken dialogue systems are created for a specific task or domain. Even when

designed to utilize online content to generate dialogue dynamically, only a small

number of web sites are made available to the dialogue manager, along with specific

knowledge of the site‟s structure. By contrast, graphical web browsers allow a user to

accomplish a number of different tasks and to access different contents in a more open-

ended manner. Furthermore, compared with GUIs, spoken dialogue systems are still a

primitive interface in terms of usability as they do not allow users to interact with

independent, unstructured domain knowledge and content in a generic and usable way.

More recent research attempting to realise a dialogue interface to the Internet has been

consistent with the ethos of separating the domain knowledge from the dialogue

knowledge, and treating the online content as the domain knowledge to the dialogue

manager. Although the ever increasing popularity of the Internet has been partly due

the syntactical standards made available for developers, there is no structural standard

for the representation of web sites, and the technologies utilised contain no semantic

information of the information represented. Additional issues arise when one considers

 67

Craig Wootton, University of Ulster

that there can be no anticipation of the requests a user may make, due to the vastness of

the domain source, in contrast with a spoken dialogue system created for a sole task, in

addition to the further requirement for informational retrieval techniques to extract the

relevant content from the Internet.

 The GENESIS system addresses the issues associated with preparing the content to be

delivered through spoken dialogue (Polifroni et al. 2003). GENESIS is concerned

primarily with the retrieval and preparation of task oriented content from the Internet for

use in a spoken dialogue system. Although long term goals are for the system to be

fully automated, the user‟s dialogue is simulated and the domain is limited to two types

of requests, namely restaurants in Boston and hotels. The focus of the research is the

preparation of the online content, such as how to cluster the domain data appropriately,

and how to construct relevant summaries to represent the data to the user in dialogue

(Polifroni & Walker 2006). For example, the restaurants could be classified as

distances from landmarks in Boston or by cuisine. Further grouping data can take place

once additional constraints have been provided. Gruenstein et al. present a similar

system with focus on creating a structured database for dialogue, but utilising numerous

unstructured online sources for task based dialogues (Gruenstein et al. 2006).

The Internet of course is a plethora of knowledge, and there is much more information

available online concerned not only with specific task domains such as flight, hotels, or

car bookings, but also with much more general, informative domains, such as news

stories or sports results. Comparisons between the two domains can be made, however

they need to be treated separately, as there are a different set of issues and challenges

associated with each domain type. Similar to GENESIS, there is a small research push

to deliver this content through spoken dialogue technology.

 68

Craig Wootton, University of Ulster

To automatically create dialogue, Gonzales-Ferreras & Cardenoso-Payo (2005) propose

to first parse the data and apply a form of tree structuring. This concept is demonstrated

in their spoken dialogue system for a newspaper front end. This approach, however,

limits the dialogue to specific domains, as it is not possible to apply a tree structure to

every form of unstructured data, and even if it were possible, it could not be done in

real-time during a live dialogue with a user.

Pargellis et al. present a system that matches the user‟s interests, stated explicitly by

selecting interest areas from a web page (Pargellis et al. 1999, 2004). As the research

covers a wide range of issues and challenges from numerous research areas, the work

and effort presented by Pargellis et al. is focused mainly on what constitutes a related

story when compared to the user‟s profile. Other areas of the system are therefore more

primitive, such as the content coming from one web site
15

 and users explicitly stating

their own profile.

Research presented until this point has limited the online domains available for dialogue

to a single domain, or a small subset of domains, due to the non-standard, unstructured

nature of online content. An alternative to this is the Semantic Web (Fensel 2003), a

collection of online web pages that have been semantically annotated. The benefits of

semantic information encoded into plain text documents that provide relevant meanings

for machines are numerous for dialogue systems, and Reithinger et al. have

demonstrated this with their own multimodal dialogue client for the Semantic Web,

known as SmartWeb (Reithinger et al. 2007). The current evolution however from the

World Wide Web to the Semantic Web has occurred on a relatively low scale, and the

15 Content available for request is delivered from http://www.ESPN.com only.

 69

Craig Wootton, University of Ulster

extra human effort required to produce the same information understandable by

machines has limited SmartWeb and other Semantic Web based solutions to a small

subset of domains and functionalities.

Perez-Quiñones and Rode provide a primitive solution involving the use of RSS to

achieve multi-domain dialogues (Perez-Quiñones & Rode 2004). By using the XML

based standard RSS, PHP scripts are utilised to extract descriptions of related stories

from various feeds, illustrated in Figure 3.2. This dynamic, informative content is

complemented by personal information held in a calendar file. However, the range of

available RSS feeds are limited to the sole topic area of news headlines, there is no

interactive dialogue between machine and human, and the functionality available to

Figure 3.2: Customisable Phone Access to Personal Information

(Perez-Quiñones and Rode 2004).

 70

Craig Wootton, University of Ulster

users is somewhat limited, restricted to a low number of key tasks associated with

managing the personal information.

The RSS content is simply used for outputs to the user with no allowable responses

from the user. Furthermore, the presentation of the content has not been considered,

being presented to the user in a simple unordered linear list of content items.

WebContext is a similar system, also developed at Virginia Tech (Capra 2003), with the

focus here on using voice on a mobile device to re-find information that has been

archived on a main computer. The rationale here is that it is likely a user will browse

the Internet using their home or office computer, followed by the need to query this

content once they have left the computer, to confirm a telephone number or obtain

directions to a certain place, for example. This is achieved by use of a standard context

representation for the online content, which can be archived and queried. This work is

currently done by hand, so that it does not allow automatic dialogue with online content

in the true sense. Nevertheless, the research has provided productive results with

regard to user behaviour when searching and re-finding information through voice:

importantly it was found that users mainly refer to web pages by title and descriptions,

not by URLs; and that users do not fully express their query initially, but engage in a

collaborative dialogue to find specific information, providing more details as the

dialogue progresses (Capra & Perez-Quiñones 2005).

The dialogue implementation is of a scripted and inflexible nature using a Context Free

Grammar (CFG) due to the „Grammar Inclusion Problem‟, where a grammar becomes

too large if all the words on every archived web page were to be included in the

language model (Capra et al. 2001). This is similar to other dynamic systems, where

 71

Craig Wootton, University of Ulster

the speech recognition performance and word error rate can deteriorate due to the access

and inclusion of a large amount of data from a database (Callejas & López-Cózar 2005).

The systems presented thus far have been dynamic systems with regard to the dialogue

evolving as it progresses. WebTalk is an automatic commercial front end question

answering solution for building the dialogue system itself from existing online

technologies (Feng et al. 2005). The architecture, presented as Figure 3.3, includes an

additional component to typical dialogue components known as the website

understanding component. The goal is to mine a web site, and instantly create an

interactive dialogue system that can answer questions and perform transactional

requests (Feng et al. 2006). This is beneficial commercially for companies as they can

replace human help desk operators with a dialogue system, removing much of the effort

required for building dialogue systems by reusing existing technologies. However the

system is specific to a web site, its associated structure technologies, and handles a

Figure 3.3: WebTalk Architecture

(Feng et al. 2003)

 72

Craig Wootton, University of Ulster

specific type of query. It is not faced therefore with the complexities associated with

utilising unstructured online content for dialogue from various sources.

3.1.3 Dynamic Dialogue Systems: Research Issues

To create a dynamic dialogue system, it is an accepted prerequisite that the domain

knowledge be separate from and accessible to the dialogue manager. For the domain

knowledge to be usable, the dialogue manager must: have knowledge of it; have access

to it; and methods for querying and extracting information. However, no piece of

research is conclusive in this area, offering no concrete evidence to suggest the best way

to accomplish these tasks.

GEMINI for example, despite having great potential for developing dialogue systems,

still requires development effort, and is semi-automatic. True multimodality is not

included, but simulated, with each modality having to be implemented separately.

AMITIíES creates dialogue from structured data, however if no structured data is

present then the dynamic dialogue cannot be created.

GENESIS accesses online domain knowledge for task oriented dialogues aimed at

providing assistance to the user, similar to a telephone help desk agent, helping them to

solve a particular problem or get specific advice. This can be particularly challenging

due to the preparation needs of the online and unstructured content. Polifroni et al.

(2003) primarily focus on domain data that can be structured in an efficient and

effective manner, such as by street name or cuisine type, continuously narrowing down

the subset of data that the user is interested in as the dialogue progresses. The same

could not be said if the domain knowledge was more general – a dataset that could not

have similar structural classification algorithms applied to it, such as news or other

informative content types. A different method of classification is needed, such as

 73

Craig Wootton, University of Ulster

dining, lodging, car rental etc, so that the domains can be separated by the types of

information they represent. Searches can be refined further by the user, just as in task

oriented dialogues. “Give me news stories for Northern Ireland”, for example. A major

difference between informational and task based dialogues is that there is no set path for

the dialogue to follow, but rather it is dictated by the user when engaged in dialogue.

With a task driven interaction, the user will usually have a specific question in mind

when they are engaged in dialogue to derive an answer from the conversational partner.

However, if there isn‟t a specific task or question to be tackled, then the dialogue itself

will usually be directed as new information is presented to the user. This is in contrast

to task based dialogues as the dialogue develops more opportunistically, whereas when

there is a specific task to be addressed a pre-defined dialogue structure exists.

This is the first issue associated with browsing the Internet using a dialogue interface.

With no set task to be completed, the dialogue itself is of an open ended form, reacting

to information requested by the user. However, there is a second, more challenging

issue. Traditional dynamic systems have been created with one, or a very small,

number of well defined tasks and goals catered for. To achieve this, they are provided

with a well structured and defined representation of domain knowledge, and associated

methods and mechanisms for retrieving data from it. However, online sources do not

follow the same knowledge representation. Web sites contain numerous different

content types and domains, and none are created specifically for use through a dialogue

interface. Previously, research has limited the dialogue to specific web sites, of which

the structure and knowledge is made available to the dialogue manager.

To combat this, Perez-Quiñones & Rode have utilised XML technology by using RSS

feeds to provide the dialogue manager with informational stories from different sources.

 74

Craig Wootton, University of Ulster

However, their system has only been demonstrated in the topic area of news, not in a

multi-domain or multi-content setup, and task oriented dialogues, such as those catered

for by Polifroni et al. have not been included. Furthermore, their system contains no

dialogues based on the informational content delivered to the system, limiting the user

to interaction with the content using a primitive dialogue interface. This effect became

known as the grammar inclusion problem; where it became infeasible to include every

word from the online content sources available to WebContext.

In short, the limitations of current dynamic dialogue systems can be summarised as

follows:

 The domain knowledge is well structured and clearly defined.

 Dialogue management is created specifically for each domain, and is not easily

transferable to another domain type or structure.

 Dynamic dialogues usually have set paths of interaction to accomplish a fixed

task or goal.

 Accessing informative content generically is beyond the scope of current

dynamic dialogue systems.

 Dynamic dialogues accessing online content are currently limited to a single or

small number of websites.

Further challenges can be identified when one considers the need of the dialogue

manager to react to the user‟s input, often relating to the previous result of the dialogue

manager. A user may wish to hear more about the said news story, or maybe to hear

about a different story unrelated to the current interaction. It is this engagement of

dialogue between computers and humans in general conversation that presents

 75

Craig Wootton, University of Ulster

numerous challenges for researchers to consider. Dynamic dialogues do allow a certain

degree of adaptation to particular users, as introduced in the following section.

3.2 Adaptive Spoken Dialogue Systems

People constantly change and adapt their dialogue to match the conversational partner -

VoiceXML specifications of dialogue are static however, and do not allow dialogue

systems to automatically adapt for different dialogue partners. By utilising the dynamic

production of dialogue and prompts, this adaptation to different speakers can be

realised, as the prompts and dialogue flow can be automatically created at run-time,

tailored for that particular user. More or less help and guidance can be given or other

considerations taken into account, whilst the system creates the prompts.

It is important at this point to briefly distinguish between adaptive and adaptable

dialogues. An adaptable dialogue simply lets the user decide and specify certain

parameters of the dialogue. Adaptive dialogue, however, is an active feature that

changes the dialogue based on parameters detected from the user, such as high error

rates. The emphasis here is on the dialogue system detecting the user‟s requirements

and adapting itself, with this adaptation occurring unnoticed by the user and not

interfering with the dialogue task.

Adaptive techniques can range from the very simple to the very complex. In task

oriented dialogues, dialogue performance has been shown to be a useful indication if the

user is experiencing problems in the dialogue. Techniques based on this approach will

be introduced in Section 3.2.1. However, as developers face the formidable task of

writing software for millions of users while making it work as if it were designed for

each individual user only, user modelling and other techniques can enhance dialogue

systems even more by adapting the actual content of the dialogue (Fischer 2001). User

 76

Craig Wootton, University of Ulster

modelling and other techniques for adapting the content of prompts will be discussed in

Sections 3.2.2 and 3.2.3.

3.2.1 Adaptive Dialogue Systems: Adapting Dialogue

Errors that occur during dialogue can be used as an indication to the system that the

dialogue management needs to be adapted, either to offer more assistance, or to change

the way in which inputs and outputs are handled. The research challenge is for the

system to discover the root cause of the errors, and then adapt its dialogue in such a way

as to remove the problematic areas.

The main cause of understanding errors in dialogue systems is that the user has a greater

expectation of what the system is capable of, and may not be aware of certain system

limitations, and therefore might try to formulate a goal which the system cannot handle

(Bohus & Rudnicky 2005c). This false belief of the user is further encouraged,

especially with new users, when the dialogue gives the initiative to the user. An open

ended question, such as “How may I help you?” may result in the user thinking they can

ask about any topic or query, even those unrelated to the domain of the dialogue system.

To prevent this from occurring, the system can choose to switch to system or mixed

initiative, to provide more help and guidance. Although this may be of help to the

more inexperienced users who require the extra help, this will be of less assistance to

the more experienced users who would be able to complete the dialogue more quickly if

they had the initiative of the conversation. It would be helpful therefore if the system

could detect if errors were ongoing throughout the dialogue, and could therefore adapt

its dialogue strategy and initiative to match this perceived expertise level of the user.

Based on this hypothesis, researchers at BMW have developed an adaptive spoken

dialogue system for the company‟s iDrive system (Haller 2003). The system first

 77

Craig Wootton, University of Ulster

classifies the users as either novice or expert; dependent upon different features of the

dialogue, such as if the user is asking for help, the elapsed time since the last

interaction, and confidence measures (Hassel & Hagen 2005). Once classified, the user

will receive the relevant system prompts for their expertise level - novice users will hear

the available commands that can be uttered, while experts will receive more condensed

prompts. This approach has also been used in other adaptive dialogue research - for

example a system for the health care domain (Giorgino et al. 2005).

It is common that certain interaction parameters are used to adapt the dialogue

specifically for a user. MIMIC (Mixed Initiative Movie Information Consultant) is a

more advanced dialogue system that also adapts to different levels of the user‟s ability

(Chu-Carroll 2000). This system is interesting because it not only considers the

initiative of the dialogue, but also the dialogue strategy which, as defined by the MIMIC

system, is a set of dialogue acts that MIMIC can choose to use to provide further

assistance to the user. For example, even though the system may choose to take the

initiative from the user, it may just ask the question “What theatre?”, as in normal

system led initiatives. A user, however, may still experience difficulties answering this.

The system then adopts a different strategy, providing more help to the user, “What

theatre? Please choose between Wellmont or Clearview” (Chu-Carroll 2000). The

initiative and strategy are implemented independently of one another, allowing for a

finer degree of adaptation, unlike Hassel and Hagen‟s system which is crude in its

adaptation for two very different groups of users.

A similar method is presented by Veldhuijzen van Zanten (1998, 1999) who has

proposed a hierarchical slot structure as opposed to the typical flat slot structure in use

by most dialogue managers. This is a novel feature for a dialogue manager that allows

 78

Craig Wootton, University of Ulster

the system to control the initiative on a much finer scale than before. It can ask very

general questions for user led initiative, “When do you want to travel?”. The user can

answer this by providing the entire set of required values to the system. If, however, the

system detects that the user is not so familiar with the system, slots from the next level

down the hierarchy can be included, “On which date do you wish to leave?”. If

problems still occur, the initiative can be made finer and finer, right down to the lowest

granularity, “What is the departure month?”.

Complementary to adapting the dialogue initiative is the dialogue strategy. Chu et al.

(2005) suggest that changing from one strategy to another continuously, and not just

when errors occur, offers the best form of dialogue adaptation. If errors occur, or the

user does not provide an informative answer as required, a more finite state based

approach is taken to lead the user through the dialogue. If they do start to over specify

answers or errors become less common, then the system switches to a more open frame

based or plan based approach.

This approach is similar to what can be achieved with the JASPIS architecture
16

. Made

up of different agents, with evaluators deciding which agent should be given the current

task, these agents can be used to model different interaction strategies for the same task

(Jokinen et al. 2002). This demonstrates how a truly adaptive and advanced dialogue

system requires a more advanced architecture.

3.2.2 Adaptive Dialogue Systems: Introduction to User Modelling

User modelling has been the subject of much investigation since conversational systems

started to appear in the 1980s. One reason for this emphasis on user modelling is the

16 For a fuller appreciation of the JASPIS architecture, refer to 2.2.2.

 79

Craig Wootton, University of Ulster

fact that such models are necessary prerequisites in order for a system to be capable of

exhibiting a wide range of cooperative dialogue behaviour (Wahlster & Kobsa 1989)

and for selecting relevant content to be uttered back to the user if utilising dynamic

dialogue (Carenini & Moore 2001). In human-human dialogue people acquire and use

knowledge about their conversational partners, and for machines to interact in the same

way they too need to acquire information about their conversational partner

(Hjalmarsson 2005). A user model can contain a variety of facts about a user, such as

the user‟s domain knowledge, the user‟s goal in asking a question, and various attributes

about the user that might help a system, both its problem solving activity and its

generation process (Paris 1993). It is therefore a knowledge source about the user

which contains assumptions and beliefs that may be of relevance to the dialogue

systems.

User modelling can range from very simple to the very complex. Simple models can be

acquired by allowing the user to select their interests and create a profile from a list of

options presented to them, which are usually related directly to subject and topic areas

that are being modelled against the user. More complex systems however will not ask

the user to explicitly create a profile for them, but will create models implicitly based on

the user‟s actions, viewing and browsing habits. Brusilovsky & Tasso (2004) describe

Information Filtering as a „listening and learning‟ approach where the system first

understands what the user wants, then evaluates whether a document is relevant or not

according to their model, and finally updates the user model based upon feedback after

the document has been delivered.

With the widespread use of the Internet, and its exponential growth since its birth, there

is now a vast amount of information online. By utilising a user model, content can be

 80

Craig Wootton, University of Ulster

delivered to the user with a higher degree of accuracy, as only content that the user will

be interested in will be delivered to them.

Information filtering can also be confused with other forms of information access based

on user modelling, so it is important to distinguish between the types and remove

ambiguity as to what constitutes information filtering. Proposed by Brusilovsky &

Tasso (2004) are four different classifications of information access methods;

information filtering, information retrieval, hypertext browsing, and information

visualisation. Whereas information filtering is the delivery of content based upon a

user‟s interests, Information Retrieval is the return of ranked links based upon relevance

to the user model, to be discussed further in Section 3.3. Hypertext Browsing and

Information Visualisation are outside the scope of VoiceBrowse, and so will be

excluded from this review.

3.2.3 Adaptive Dialogue Systems: Adapting Content

User Modelling, specifically Information Filtering, has been proposed as one way to

adapt the content of output prompts from a dialogue system to the user. Research from

Kyoto University has demonstrated this by implementing a user model to classify a user

according to three different measurements: skill level, knowledge level and degree of

urgency (Komatani et al. 2003). The skill level concerns the user‟s expertise relating to

using the system. The knowledge level concerns the user‟s expertise in the domain,

while the degree of urgency is how quickly the user needs the information from the

system. The amount of details, and content of the prompts, will be adapted towards the

particular user who is currently interacting with the system, with respect to these three

user attributes.

 81

Craig Wootton, University of Ulster

User modelling allows a higher level of dialogue adaptation than that based on dialogue

indicators and performance. Although adaptation was performed before, users would

still be getting the same prompts based on how they were classified by the system,

novice or expert. As user modelling uses the user‟s qualities to adapt the dialogue, each

dialogue will be truly unique for that user. Komantani et al. (2005) use the skill level

and urgency of the user to adapt the dialogue initiative, whilst the knowledge level of

the user is used to adapt the content of the output prompts, adding more domain specific

information if needed for the user.

Adapting dialogue based on user qualities is obviously more beneficial therefore than

basing the adaptation technique on dialogue performance. For a further application of

integrating user modelling with dialogue systems, please refer back to Section 3.1.2

where work by Pargellis et al. was presented which utilised user modelling for the

delivery of content from the Internet through spoken dialogue. Pargellis et al. was

focused on adapting the content of the dialogue rather than the initiative and prompts

like Komatani et al.

With regard to mobile based devices, user modelling is seen as very important due to

the larger constraints of a smaller interface for displaying information. Presently this

mobile work largely includes in-car navigation and conversational devices with the aim

of limiting the cognitive overhead of interacting with such a system. In this in-car

domain, developers face very specific challenges associated with user modelling,

including identifying and retrieving the current user and associated model, creation of

new models for new drivers, updating and enhancing the models through limited

dialogue and identifying the most appropriate information to include and use in a model

(Bernsen 2003).

 82

Craig Wootton, University of Ulster

Early work in this domain includes The Adaptive Place Advisor, joint work between

DaimlerChrysler Research and Stanford University, which is a system for advising

drivers through conversation of restaurants in a certain area (Göker & Thompson 2000).

The system‟s architecture, presented as Figure 3.4, shows how a user model can interact

with a dialogue system. In addition to the normal components of spoken dialogue

architectures, such as a speech recognisers and dialogue manager, it also contains

retrievals engines specialised for the system to access the specifically structured items in

the database, and a user modelling system which interacts directly with the dialogue

manager. Conversation histories are passed to the user modelling system which updates

certain attributes in the model, such as cuisine, price range and parking availability.

Queries from the user are then passed to the user model, which refine the queries based

on relevant attribute-values pairs found in the user model.

Early versions of the user modelling system did have certain limitations, such as the

lack of ability to combine attribute-values pairs, and therefore often suffered from

refining user‟s queries too much, limiting the results fetched by the retrievals engine.

Later versions however, implemented included a more powerful user modelling system,

Figure 3.4: Adaptive Place Advisor Architecture

 83

Craig Wootton, University of Ulster

capable of relaxing certain constraints, based on preference orders of the attribute values

pairs (Thompson et al 2004).

Fischer et al. present an alternative hybrid content based approach of gathering explicit

user preferences and also updating the user model based on implicit information

inferred from the user interaction with personalised web based information delivered to

an in-car system. Evaluations show however that a large number of dialogues is

required to achieve a high level of performance with regard to the user model (Fischer

et al. 2007).

3.2.4 Adaptive Dialogue Systems: Research Issues

Dialogue management and content can be adapted based either on dialogue performance

and indications of problems arising, or on the user‟s qualities and interests acquired by

some form of user modelling or learning algorithm. This is comparable to the human

method of adaptation during interaction, first by short term adaptation based on

dialogue, and then on content and topics in the long term as the conversational partner

learns the profile of the person.

This can also be classified, not in terms of short term and long term adaptation, but task

oriented or content oriented adaptation. It is a trend that, when involved in task oriented

dialogue, the dialogue strategy is adapted to match the user‟s perceived experience. In

theory, this should help the user solve the task more efficiently by providing the

relevant amount of guidance and flexibility. For example, if the user is „expert‟ with

respect to having prior use of the system, then the system should allow them to take the

initiative, or not confirm each value as it is elicited. If the user is „novice‟ however,

having limited knowledge of the dialogue system, then the system should provide more

 84

Craig Wootton, University of Ulster

help and guidance which, although increasing the average length of the dialogue, will

result in a successful task completion.

Compared to a system that delivers informative content however, it is the content itself

that needs to be adapted. When considering a system that delivers content through

dialogue however from the Internet, prompt adaptation is made somewhat more

complex due to the wealth of information available online, the interest in which will

differ from user to user. Pargellis et al. addressed this, although their research was more

focused on information extraction from an online source, and so the area of user

modelling was simulated to an extent by getting the user to state their own interests and

subject area explicitly. This is a basic form of user modelling, and less advanced than

implicit methods of gaining a user profile. This is one area in which the work delivered

by Pargellis et al. could be improved, however it would be of more importance and

value if the system could be implemented in a more general way, rather than just using

the one web site for the source of the content.

Furthermore, information available online consists of both task and information based

content. In application terms, this means the system could either be engaged in task

oriented dialogue, or content based dialogue. Therefore, to be truly adaptable, dialogue

features as well as content will be required to be adaptive. Some form of heuristics

adapting dialogue style and user modelling will also be required.

In summary, lesson learnt from current adaptive dialogue research include:

 Using interaction parameters throughout the interaction provides a mechanism to

adapt the dialogue initiative and strategy as needed, usually in task based

dialogues.

 85

Craig Wootton, University of Ulster

 Outputted content from a dialogue system can be adapted with the use of a user

model for information-based dialogues.

 Both elements and approaches are required to be implemented due to vast range

of both task and informative based content that can be found online.

3.3 Information Retrieval

As discussed later in Chapter 4, VoiceBrowse will make use of techniques from the area

of Information Retrieval (IR), and so a brief overview of this area is included.

IR systems usually employ one or more classification and retrieval algorithms to

explore a large collection of documents and return the most appropriate based on the

user‟s query. Often done by way of keywords, IR applications range from everyday

public use to tools assisting and supporting specialists in their place of work, such as an

engineer who might use IR to locate information in the manuals for a large project

(Witten et al. 1999).

Providing a natural and intuitive method for accessing vast amounts of information, a

dialogue system provides an enhanced alternative interface for use within an IR

application. By using a natural and non-programmatically based language, retrieval

queries can be constructed through collaboration between machine and user. The

interactive nature of dialogue can suit IR applications where predefined queries need to

be constructed, as often an incomplete query is presented to the system leading to some

uncertainty about the information required. Notable work with respect to this includes

Zhong and Gilbert (2005), who concluded that users are not likely to present more than

two key terms when engaged in dialogue, and therefore further utterances are required

to construct the query.

 86

Craig Wootton, University of Ulster

In IR, it is common that term weights are given to each word in the document

collection, with higher weightings given to key terms that appear fewer times, based on

the assumption that the fewer times a term appears in a document collection, the more

specific it is and can therefore help identify individual documents. Web based IR, such

as online querying and searching, is faced with unique challenges and issues due to the

greater amount of data available online and the greater number of simultaneous

searches. Indexing, clustering and ranking algorithms for online documents are

common methods used to realise web based IR (Kobayashi & Takeda 2000).

Sieg et al. (2004, 2006) present work known as ARCH, which although not based on

dialogue, utilizes interactive query formulation and domain specific hierarchies to

produce a „richer and therefore less ambiguous query‟. Using hierarchies provides an

effective way of enhancing similarity measurements, especially where they are already

available. Ganesan et al. (2003) show also how this method can overcome the problem

of sparse data in IR.

Other researchers have also proposed their own versions of COSIM or tw calculations

to enhance the performance above the baseline. Choi et al. (2005) enhance the COSIM

also with semantic information, focusing their attentions on the semantic web and the

metadata that it contains about documents. Their Semantic Web based Information

Query System (SW-IQS) uses an ontology server to enhance the efficiency and

accuracy of IR for unstructured and semi-structured data.

Alternatively other researchers have relied on WordNet; a well used and tried hierarchy

of words, to provide for synonyms in queries - as demonstrated by Richardson &

Smeaton (1995) and Feng et al. (2004). Bollegala et al. (2007) propose an alternative

method of measuring similarity between words - rather than relying on precompiled

 87

Craig Wootton, University of Ulster

taxonomies, such as WordNet, they offer an approach of relying on page counts and

snippets returned by the search engine Google
17

. This overcomes one major

disadvantage of relying on WordNet; that is similarity between proper nouns may not be

recognized e.g., „Apple‟ is the name of a large computer company, but this sense is not

included in the WordNet database (Bollegala et al. 2007).

3.4 Summary

Dynamic and adaptive dialogue research aims to overcome the limitations of current

spoken dialogue systems, introduced in the previous Chapter. The limitations include

the limited flexibility of the dialogue, static prompts and dialogue management, and

lack of individualisation with regard to content.

An approach to overcome this is to separate the domain knowledge from the dialogue

knowledge, a consideration being to ensure that the domain knowledge is well

structured and accessible to the dialogue manager. A system designed to deliver

personalised content from the Internet presents a challenge with regard to this

requirement, as the content will vary in form, structure and type. Additional issues arise

from a broad range of research areas, such as user modelling to tailor the information

delivered for each user, and information retrieval to identify and fetch the content

To conclude, the Internet has become a hub of information for people, and for some it

has also became a central part of their daily lives. There is great potential for a system

that would automatically navigate to a specific web „page‟, and, instead of displaying its

contents visually to the user, perhaps engage both parties in a form of conversation

related to the content. Usability consequences arise however, as spoken dialogue

17 http:www/google.co.uk

 88

Craig Wootton, University of Ulster

systems do have limited scope for presenting vast amounts of information to the user.

Additionally, whereas the spoken dialogue systems presented so far in the research are

created for a specific purpose or task, a spoken dialogue system to access information

will be required to manage and present information generically but meaningfully to the

user.

This research will focus on developing an architecture to realise a spoken dialogue

system that can utilise information from the Internet to encourage dialogue – in other

words provide a dialogue interface for browsing the Internet.

 89

Craig Wootton, University of Ulster

Chapter 4: VoiceBrowse Introduction and Architecture

Following the review of the literature related to dynamic and adaptive dialogue systems,

both needs and gaps were identified with respect to browsing online content through

dialogue, and it is these gaps that VoiceBrowse aims to investigate and explore.

Current dialogue managers developed to parse and understand one website are not

highly portable to different websites - previous approaches therefore have been to limit

the scope of the system to a smaller subset of websites. VoiceBrowse will attempt to

make the first step at achieving truly generic dialogue across multiple domains and

content types, a dialogue system capable of supporting interaction between human and

machine based on any website or content.

This chapter first addresses the current research gaps by introducing a set of

requirements that will provide the basis for the functionality and research contributions

of VoiceBrowse, and also a foundation on which to evaluate the system once it has been

implemented. Next, the VoiceBrowse architecture will be presented followed by a

discussion of its main components and the proposed solution of using RSS and API

feeds to cater for the online information retrieval required. The remainder of the

chapter will discuss the focus of the research, and indicate those components of the

overall architecture that will be considered beyond the scope of the dissertation.

4.1 VoiceBrowse: Requirements Derived From Research Gaps

The proposed research aims to support a level of dialogue and interaction more

extensive than that which more traditional spoken dialogue systems architecture

currently allow. An architecture that will support the areas of dialogue management,

content delivery, user modelling and multimodality will be required to realise the

 90

Craig Wootton, University of Ulster

following set of requirements, identified in the review of the literature. Not all of the

requirements will be implemented in VoiceBrowse, and Section 4.9 will discuss this

further.

Requirements – system functionality

1.1 The system should cater for voice input and output.

1.2 The system should allow the user to interact with existing Internet based sites.

1.3 The system should cater for common daily web based tasks e.g., reading

news, flight bookings etc. using the Internet to accomplish the goals. This

should include both task-based and information-based dialogues.

Research requirements – technical contributions

2.1 The dialogue manager shall interact with various domain and content types

from various sources.

2.2 The online websites shall not be pre-processed or structured in any specific

manner.

2.3 The system shall interact with multimodal outputs where appropriate.

2.4 The system shall be available for interaction on various devices with different

capabilities.

2.5 The system shall personalise the requested content for different users.

2.6 The system shall be easy extendible with new types and sources of content.

Research requirements – usability contributions

3.1 The system shall be usable in an efficient and effective manner.

3.2 The functionality of the system should be quick to learn and easy to use.

3.3 The system shall provide help to the user when required.

3.4 The system‟s output should be meaningful to the user, and generated in an

appropriate manner.

 91

Craig Wootton, University of Ulster

4.2 VoiceBrowse: Applications and Users

The potential for such a system extends beyond the research issues and questions to be

addressed, as it is possible that there would be benefit in deploying VoiceBrowse in the

real world. A current limitation noted for the graphical web browser is its reliance on

the use of the mouse and keyboard, both of which require a home computer setup, and

the ability to use such devices. To extend the Internet beyond the graphical browser

without requiring either a computer or the knowledge and ability to provide hands on

interaction would improve the accessibility of online content greatly.

Without requiring a home computer to access online content, or other similar hardware

such as a PDA or smart phone, users would be able to access the Internet from a simple

device such as a telephone. For commercial use, companies, and even cities, could

implement dedicated VoiceBrowsing booths that would allow the simple finding and

retrieving of online content related to their company or tourist information.

Moreover, and perhaps with greater promise, is the accessibility of online content to

those who either do not have the knowledge of how to use current graphical browsers,

or are incapacitated from doing so due to mobility reasons. Removing the need for

hands-on interaction will open up the Internet to a much wider audience than is

currently possible. It is these scenarios and targeted users that VoiceBrowse will seek

to aid and support.

4.3 VoiceBrowse: Use Cases and Example Dialogues

To help drive development and assist with realising the above requirements, a set of use

cases were produced to illustrate the functionality of VoiceBrowse. Figures 4.1 and 4.2

show the high level functionality of the system, allowing the user to accomplish either

 92

Craig Wootton, University of Ulster

task-based dialogues or information-based dialogues driven by the utilisation of online

content. It is the responsibility of VoiceBrowse to interpret the user‟s requests, extract

the information from the various online sources, and then prepare the content in an

appropriate ,manner for spoken dialogue. The above Use Cases show that it is the

collaboration between user and VoiceBrowse that allows the relevant dialogues to be

accomplished.

 Figure 4.3 shows the use case for the roles available to the user and system during an

information-based dialogue. This Use Case illustrates that the user can listen to short

synopses of stories retrieved from web pages, or the user can request the main body of

the story to be retrieved from its online source. Additionally, the user should be able to

navigate around the story descriptions available, and also the main body of the story. It

is VoiceBrowse‟s responsibility then to manage the current environment with regard to

Figure 4.2: VoiceBrowse Use Case - Available Dialogues Types

Figure 4.1: VoiceBrowse Use Case – System Functionality

 93

Craig Wootton, University of Ulster

content, in particular the RSS feeds available. As discussed further in Section 4.5, by

using XML technology a novel approach of utilising RSS feeds can provide a

mechanism for delivering online content through dialogue. At this point however, the

Use Case simply provides a pictorial illustration of its responsibility during the

dialogue.

Similarly in Figure 4.4, a Use Case is presented to summarise the functionality and

responsibility of both system and user during a task-based dialogue. This Use Case

simply shows that, during such a dialogue, the functionality to provide the values

required to complete the task is the responsibility of the user, after which they can

Figure 4.4: VoiceBrowse Use Case – Task-Based Dialogues

Figure 4.3: VoiceBrowse Use Case - Information-Based Dialogues

 94

Craig Wootton, University of Ulster

navigate through the results returned by the vendor or content provider. It is therefore

VoiceBrowse‟s responsibility to: produce the appropriate dialogue to collect the

required values from the user; submit the appropriate request for content to the correct

vendor; and then extract and prepare the results into a meaningful form for the user.

To further demonstrate the proposed functionality of VoiceBrowse, consider the

hypothetical dialogue shown in Figure 4.5. This dialogue illustrates all of the current

research gaps identified in the literature that have formed the requirements of

VoiceBrowse, and it exemplifies the Use Cases previously presented. Specifically

VoiceBrowse should allow the user to engage in dialogue based on the delivery of

content in a multimodal form that has been automatically generated from web site

content, and personalised for that particular user. This is shown in System Utterance 1,

reacting to the question from the user regarding the news headlines. In response to this,

the system presents some general news headlines to the user, and also one football news

headline. The content delivered to the user has also been personalised, due to the large

User (U) 1: Good morning, what is the news today?

System (S) 1: Good morning. The news today is “Crash landing for cargo plane at

Birmingham airport”, “Banking giant to create 145 jobs”, “Hospital ward could close in Co.

Donegal”. The sports news is “Inter Milan begins negotiations with Lampard”.

U2: Tell me more about Lampard.

S2: “The Serie A club Inter Milan is believed to have sent a fax to Chelsea to begin the

process of reuniting the 30-year-old with former Blues coach Jose Mourinho.”

U3: Actually, I have just remembered I have to book a flight to London for next Thursday;

can you get me a list of available flights please?

S3: There are flights to London Heathrow and Gatwick from Belfast City Airport. The

flights times are 09.00, 10.00, 10.15, 11.00.

U4: And what about return times that evening?

Figure 4.5: VoiceBrowse Dialogue

 95

Craig Wootton, University of Ulster

amount of information available online. The user model here has tailored the system‟s

response to this particular user, delivering the news headlines that it now infers the user

is interested in. Each person will have their own interests and relevant topics, and so

the dialogue system will need to know which content to deliver and which content not

to deliver when the user engages in dialogue. Different users will have different

responses from VoiceBrowse as they interact with the system over time.

The user can then respond to the content delivered by the system, either by further

questioning the system regarding the content or shifting to a different topic entirely,

both these reactions illustrated in User Utterance 2. Here, the user has became

interested in the headline regarding Chelsea midfielder Frank Lampard, and asks for

more details regarding this story. However, during the output of the story‟s main body,

the user remembers a flight that is required to be taken, and initiates a new dialogue

with VoiceBrowse to complete this task.

Additionally, this then demonstrates the key element of VoiceBrowse that it is to be

generic, not be fixed to one domain, content, or content source, but rather able to deal

with a wide range of content types from a wide range of online sources. This is shown

throughout the dialogue, as user and system interact with one another in both

information-based and task-based dialogues.

Current dialogue systems are not able to handle this form of opportunistic generic

dialogue, driven by unstructured content types from numerous sources. These gaps

have been summarised above, and presented as the requirements of VoiceBrowse, and

an architecture has been proposed to realise the system.

 96

Craig Wootton, University of Ulster

4.4 VoiceBrowse: Architecture

The above requirements summarised the research gaps identified during the literature

review, providing a means for various novel contributions to dialogue research. As

stated in Chapter 2 an important aspect of any advanced dialogue system is the

architecture which will support the advanced features. For VoiceBrowse, in addition to

the Dialogue Manager required for such systems, it was decided to also include a

Content Manager and a User Manager to provide the various content and user related

functionalities specified above. A conceptual architecture was produced, illustrated in

Figure 4.6, incorporating many features that have proved beneficial in similar dialogue

systems reviewed in Chapter 2. The architectural components are represented as square

boxes and the interactions between components as directed arrows.

Figure 4.6: VoiceBrowse Architecture

 97

Craig Wootton, University of Ulster

The architecture itself was developed using a client-server paradigm, where the client

represents the device that the user interfaces with during the interaction, and the server

represents the logic and system side that contains the VoiceBrowse system. Designing

the architecture as client-server facilitates the devices and the system to work

independently of each other, allowing devices to be added and removed without

affecting system functionality.

On the client side, the device will contain some form of input device that will

accommodate spoken input, such as a microphone, and will cater for multimodal output

through graphics and sound by use of graphical displays and speakers. It is proposed

that a form of Device Manager will reside on the server that will manage the available

devices and their capability within the current VoiceBrowse environment. Combined

with the independence of the device and server, this will allow the server to output the

current content to the most appropriate device in the environment.

The server side contains the main components required for a dialogue system, namely a

speech recognition engine, a language understanding engine, a language generation

engine and a text to speech engine. In addition, VoiceBrowse will contain three

modules that will be unique to the system and provide the foundation for the

functionality identified in the requirements: the Dialogue Manager, the Content

Manager and the User Manager.

The interaction will start with the input component on the device capturing the user‟s

utterance. This will primarily be a speech recogniser, but additional input components

can be added to the device for multimodal input. This will then be passed to the

Dialogue Manager, which will extract the user‟s intention from the utterance. Requests

for content will be passed firstly to the User Manager to further refine the query based

 98

Craig Wootton, University of Ulster

on information contained in the user model, before passing the request to the Content

Manager. The Content Manager is charged with managing and retrieving information

from the Internet, and returning its results back to the Dialogue Manager via the

language generation engine, which tailors the output into a meaningful form for

dialogue.

To act as a bridge between the Dialogue Manager and the unstructured online content, a

novel solution utilising RSS feeds, a well defined XML specification, provides a

standard method for querying and accessing available online content. Described further

below, RSS and API feeds are represented in Figure 4.6 as X1, X2, ..., Xn, and it is the

role of the Content Spotter to select the most appropriate feed that has the necessary

content to handle the current query. This, and the role of the other managers with

regard to the use of RSS and API feeds, will be discussed further below.

4.5 VoiceBrowse: Utilising RSS and API feeds

The major challenge associated with Internet browsing through dialogue is catering for

the vast array of content available online. The various web site structures and the

numerous types of contents available create insurmountable problems for current

dialogue managers that are created for a specific task and content. To address this issue,

suitable processes are required to parse and extract information into a standard suitable

for interaction with the Dialogue Manager. As this is anticipated to consume resources

and time to achieve, another solution was conceived, one that reuses existing web

technologies already in place to achieve the same results.

A novel approach to retrieving the content from online sources is to utilise APIs and

RSS feeds. By doing so, one can retrieve information from online sources for use in a

dialogue system without having to consider the challenges and issues associated with

 99

Craig Wootton, University of Ulster

the information not being stored in a standard way. Already it is common to extract the

content from a RSS feed and place it into a (x)HTML page for reading. To understand

RSS further, consider the simplified RSS example overleaf in Figure 4.7. Although

there are additional elements and attributes that make up a legal RSS specification in

addition to those shown in Figure 4.7, what is important to note is that an RSS

document contains one or many <item> elements,

each of which contains one <title> and one <description> element. The entire RSS

document is specific to a particular content type, in this example Football from the

BBC, and the current stories that make up the content are represented by the numerous

<item> elements.

As RSS feeds are available for many different content types from different sources, the

<description> elements provide a method for real-time information retrieval and

extraction in a dialogue system. However, as the <description> element often only

contains the introduction to a particular story, the challenge of interfacing one dialogue

manager with various web sites of different structures still arises, due to the need to

access the web page containing the story, indicated by the <link> element, if the user

Figure 4.7: An Example RSS Feed

 100

Craig Wootton, University of Ulster

requests more information regarding that particular story. The solution to overcome this

will be discussed in Chapter 5.

In addition to RSS feeds, APIs are also provided by a range of different service and

content providers. APIs provide an alternative to the front end interface for interacting

with the content provider‟s core services. For example, an API from eBay can allow for

the searching and bidding of items from an external web site, or a BBC API can allow

for the searching and retrieval of information regarding the scheduling of programmes.

Whereas RSS feeds provide information and content specific to a certain topic, APIs

support the completion of certain tasks relating to the vendor‟s back end systems.

Like RSS, APIs simply provide the specification required for retrieving data from a

content provider, and it is up to the developer to decide how to embed the API in an

application, and the means by which they collect the required parameters from the end

user and then package these into the API query. Returned results from the content

provider in response to the API submission are in the form of an XML document, which

can be transformed into a variety of specifications using XSLT or an appropriate

scripting language. However, unlike RSS, the XML specifications of APIs are vendor

specific, and can therefore not be accessed in a standard way. This will be an issue for

consideration, discussed further in Chapter 5.

It should be noted that the current description of APIs relates to available APIs provided

by online content providers for web development use. Whilst this is the primary scope

of the research, it should be mentioned that APIs by definition are programmable

interfaces, and not limited to online content providers. Many applications providers,

such as Microsoft, make APIs freely available for developers to interact with

applications such as operating systems and office applications. There would be

 101

Craig Wootton, University of Ulster

consideration for future work in integrating APIs for controlling devices and computer

systems with a dialogue manager to extend such a system beyond the use of providing

online content to end users.

It was decided that the APIs and RSS feeds be treated as plug-ins to the system; that is

to say each plug-in will represent a content source, and whatever content is relevant to

it. For example, if a user requests a news story or headlines, the BBC RSS
18

 plug-in

would be chosen here. Alternatively, if a user wishes to order some books from

Amazon, the Amazon ordering API
19

 would be used. Each plug-in will be

encapsulated, so that they can be added and removed from the system without affecting

the other plug-ins.

By using RSS feeds, it is a belief that a dialogue manager can be developed to

generically extract domain knowledge from numerous sources of unstructured online

content. Furthermore, as RSS feeds provide information-based content from various

providers, and by contrast APIs provide a means of completing various tasks from

various providers, this gives a distinction between two different types of dialogue, each

of which will be handled differently - information-based dialogues, such as requests for

news and weather, will be provided by RSS feeds, and task-based dialogues, such as

booking cinema tickets and flight tickets, will be handled by the APIs.

This approach of utilising API and RSS feeds as a structured bridge to unstructured web

sites to support dialogue management has not been studied previously. Making use of

such programming mechanisms will remove the majority of issues arising with

18 feed://www.bbc.co.uk/go/homepage/int/ne/nrss/log/i/-
/news/rss/newsonline_uk_edition/front_page/rss.xml

19 http://www.amazon.com

 102

Craig Wootton, University of Ulster

retrieving and extracting online content, offering a clearly defined, structured and

accessible way of adding content into a spoken dialogue system. An introduction to the

three managers now will be presented, introducing the workflow through the

Architecture and the rationale for its structure. How the various feeds will function with

the Content Manager will be described in detail in Chapter 5.

4.6 VoiceBrowse: User Manager

An important aspect identified in the literature review with regard to browsing a vast

amount of content such as the Internet is that of user modelling. It is for this reason that

a User Manager has been included in the VoiceBrowse architecture. After a request for

information has been received by the system, it will be passed on to the User Manager

which will enhance the request with information from the user model concerning the

user‟s interests and dialogue preferences, such as number of result items, preferred

output device and verification strategies. Once the request has been handled by the

Content Manager, due to the enhancement by the user model, the results returned will

be relevant for that particular user. For example, if the user makes a request regarding

news headlines, the user model will refine this query to only include business and

football headlines as the User Manager has inferred these interests from the dialogue

history.

This is important as only a limited amount of information can be output to the user

through voice at any time, so it is imperative that that information is relevant and

meaningful to the user. User modelling provides a mechanism to acquire and utilise a

collection of user‟s preferences and interests, allowing informational queries to be

further refined and optimised producing a more relevant result set for the user. Due to

the limited amount of content that can be conveyed in voice prompts when compared to

 103

Craig Wootton, University of Ulster

graphical displays, user modelling algorithms need to be more accurate and have better

performance. The methods for presenting related information through dialogue also

need to be addressed.

Consider recommender systems which, when used with a graphical interface, present

numerous pieces of items related to the user‟s browsing habits on screen. If the user is

interested in them, then the algorithm is a success. However, if the user is not too

interested in the recommended items, then they can simply choose to ignore them. This

displaying of unrelated items is not a huge upset to the user, as they can simply just look

over them.

When compared to the use of a recommender system in a spoken dialogue system, it

would be a lot less satisfying and bothersome for the user to have to „listen‟ explicitly to

a list of recommended items that they are not interested in. Recommender systems

therefore do present some different challenges for researchers of user modelling to

consider when used with spoken dialogue interfaces. One advantage, however, would

be that the user explicitly has to tell the system that they are not interested in the

recommended items. This would provide good feedback for the recommender

algorithm, and allow it to refine its model of the user‟s interests. This is not always

possible with a Graphical User Interface, as the user simply looks over any unrelated

recommended items.

4.7 VoiceBrowse: Dialogue Manager

The dialogue manager will receive the input string spoken by the user, and decide what

action to perform next in the interaction. A key component alongside the Dialogue

Manager will be the Language Understanding Engine, which will extract the relevant

meaning from an input utterance. Due to VoiceBrowse catering for dialogue with

 104

Craig Wootton, University of Ulster

multiple content types and tasks, the role of the Language Understanding Engine will

include functions such as discovering the intent and relevant content communicated by

the user, so that the Dialogue Manager can act appropriately. If it is a task based

interaction, then more information may be needed from the user. If it is a request for

content, or all required information has been elicited from the user and understood by

the dialogue manager, then the request will be passed to the User Manager to retrieve

any recorded preferences that may be utilised. Finally, the request will be passed to the

Content Manager to retrieve the information from the Internet.

On the other side of the interaction is the output from VoiceBrowse, and the Dialogue

Manager also has the responsibility of preparing the retrieved content to be delivered to

the user in a meaningful and sensible way. In a traditional dialogue system developed

for one specific task, or those developed for a static domain, outputs are easily

anticipated and catered for through the use of templates at each dialogue state.

However, with VoiceBrowse being both multi-domain and dynamic, the output will

change at each state, for each user, and additionally be content specific; news stories

will be required to be output differently from flight searches, for example. The

Language Generation Engine will decipher what type of content is to be presented to the

user, how it is to be presented, and interact with the Device Manager to decide if the

current interacting device is to be used or infer that another device should be used. The

Device Manager is charged with looking after the different devices currently contained

in the system environment and available to it, so that the Dialogue Manager can know

what output formats can be supported by the device that the user is currently interacting

with. This will also allow the Dialogue Manager to suggest that the user should switch

to a different device that is more appropriate in the environment than the current one.

 105

Craig Wootton, University of Ulster

To facilitate this communication between Dialogue Manager, Language Generation

Engine and Content Manager, a standard XML specification will be developed. This

standard will contain the content returned by the Content Manager, allowing the various

managers and modules of VoiceBrowse to operate independently of one another. A

more detailed discussion of the Dialogue Manager is provided in Chapter 6.

4.8 VoiceBrowse: Content Manager

The requests from users will eventually be passed to the Content Manager, which

manages the online content available to VoiceBrowse. Similar to the Domain Spotter of

the Queen‟s Communicator (O‟Neill et al. 2005), and the Evaluators in the JASPIS

Architecture (Turunen 2004), the Content Manager will review the collection of feeds

and choose the most appropriate one to be returned to the user based on the input query.

If a feed is available to appropriately handle the interaction, the Content Manager will

extract the relevant content from this feed. It will then be passed back to the dialogue

manager for presentation to the user. Once the dialogue has been prepared in a

meaningful way by the content generator, it will be delivered back to the user. As

previously mentioned, it may be the case that additional content is still required to be

extracted from the source web page, in which case the issues surrounding information

retrieval from numerous unstructured sources still arise. This will be addressed in

Chapter 5 along with a detailed discussion of the Content Manager.

4.9 VoiceBrowse: Research focus

The proposed architecture extends beyond the remit of dialogue research by

incorporating additional issues associated with research in other areas, such as

multimodal dialogue, user modelling, and online information retrieval from

 106

Craig Wootton, University of Ulster

unstructured sources. Each of these areas presents their own unique challenges.

Pargellis et al. (2004) additionally commented that these areas are made even more

challenging in the diverse environment of the Internet, where content types are not

standardised.

It is proposed therefore to narrow the architecture development to those areas specific to

the research shortcomings identified with respect to dialogue, and therefore only the

Dialogue and Content Managers will be implemented, with the modular nature of the

architecture allowing the future development of the User and Device Managers.

4.10 Summary

This chapter has presented the requirements of VoiceBrowse that have evolved from the

gaps and shortcomings identified in the literature review:

 Dependence on a specifically created and structured knowledge source for

dialogue.

 Dialogue restricted to a particular domain or content type.

 Lack of dialogue usability knowledge with regard to browsing the Internet

through voice.

In summary, VoiceBrowse will realise truly generic dialogue, utilising content not

of a specific type or from a specific source but extracted from unstructured online

sources to support both task-based and information-based dialogues between human

and machine. The broad spectrum of possible content types will be problematic.

Structured web services such as APIs and RSS feeds will be utilised to retrieve the

content from the Internet, implemented as „plug-ins‟ to VoiceBrowse. As new API

and RSS plug-ins are made available for evolving content types and sources, they

 107

Craig Wootton, University of Ulster

can simply be integrated into the system without affecting functionality or the

operation of the other plug-ins. However, generic methods are required to engage

the user in conversation based on online information accessed from more than one

source – this introduces associated issues and problems here with natural language

understanding that will also be addressed.

 108

Craig Wootton, University of Ulster

Chapter 5: VoiceBrowse Content Manager

This chapter will introduce the Content Management component of VoiceBrowse. Its

function and roles within the overall architecture will be explored, followed by a

discussion on challenges to be overcome. The design and workflow of the Content

Manager will be considered, followed by a preliminary experiment to evaluate the

potential performance of the Content Manager.

5.1 Content Manager: Introduction

Figure 5.1: Content Manager

The Content Manager‟s primary role within the VoiceBrowse architecture is to make

the online content from the Internet available to the Dialogue Manager (see Chapter 6).

To provide for this functionality is a two-step process: firstly, to decide where the

content should come from to satisfy a user‟s query; and secondly, to extract the relevant

information from the online source.

The decision of choosing the most appropriate feed is the job of the Content Spotter,

shown in Figure 5.1, with RSS and API feeds represented by X1, X2, and X3. This

 109

Craig Wootton, University of Ulster

polling or weighting of sub-components is similar to the domain spotter in the Queen‟s

Communicator, and also the role of evaluators and agents within the JASPIS

architectures (see Section 2.10), and is discussed further in Section 5.3.

Secondly, once relevant information from a particular feed has been identified, it is then

the job of the Content Manager to extract the full body of content from the associated

Web Site. To accomplish this generically would mean to overcome one of the

limitations of current dynamic dialogue system identified in the research – that of the

reliance on specifically crafted and well structured knowledge sources for dialogue

management. It is proposed that by relying on structured RSS and API feeds as a

„bridge‟ to online web pages, identifying relevant online information becomes standard

due to the set specification of RSS. Furthermore, as RSS feeds additionally contain

URL information for each story represented, the location of the information to be

extracted is also represented in a standard way. Therefore the second task of extracting

unstructured information has been reduced to a series of standardised, multiple steps:

given a URL, download the HTML located there; standardie the HTML to W3C

conformity; and finally extract and output the main body of content to the user.

Many tools are freely available for „cleaning‟ or „standardising‟ HTML from web

pages, such as HTMLtidy
20

. This vital step is required to overcome the possibility of

attempting to parse illegal HTML documents, therefore encountering errors. Such tools

also ensure that all bodies of text are encapsulated in relevant paragraph, or <p> tags,

making them extractable by the XPATH query language. Once all HTML has been

20 http://tidy.sourceforge.net/

 110

Craig Wootton, University of Ulster

made standard, the Dialogue Manager can treat all content of any source, type or

structure as the same XML formatted document.

5.2 Content Manager: Issues and Concerns

Online information from multiple domains can create a number of potential issues and

concerns when coupled with a spoken dialogue system, such as: how the API and RSS

feeds can be „plugged‟ into the architecture independently of the Dialogue Manager;

and how can the dialogue manager evaluate and choose the most appropriate feed for a

given request?

Regarding the former, RSS feeds can be made known to the Content Manager by

including the URL of the RSS feed into the system. API feeds, however, are more

challenging and require more effort due to their non-standard format. An API from

Amazon will be entirely different from one from Expedia, for example - not only in

terms of functionality offered and required parameters for operation - but also in how

the API is represented in terms of mark-up and specification.

Consequently, due to the non-standard representation of APIs, the Content Manager

cannot treat different APIs in the same manner, in contrast to the one method that can be

used on any RSS specification. The interactions between the Content Manager and the

different APIs, and also the RSS feeds, should be transparent to the Dialogue Manager –

as illustrated in the architecture. The Dialogue Manager will interact with the Content

Manager in a standard manner, irrespective of RSS or API feed in use. Extensibility of

the domains should also be catered for with the encapsulation of the feeds and their

communication with the Content Spotter conducted in a standard way. This will ensure

that the feeds and Content Spotter can both be implemented independently allowing

new feeds to be added to the system without affecting its operation.

 111

Craig Wootton, University of Ulster

Secondly, the polling or weighting algorithm required for the Content Spotter is made

somewhat more complex for two different reasons: due to the ambiguity involved with

natural language; and the fact that the utterance will contain more than one word for the

classification process, all of which should be used to select the most appropriate feed.

Consider for example the utterance “What was that news about Heathrow today?”. If

each word is to be weighed against the available feeds, then „news‟ feeds would return a

high probability to handle the query, whereas „travel‟ feeds may return a probability

also, but lower, due to the presence of the word „Heathrow‟.

Further challenges arise when one considers that different content types also present

different requirements from the user. A query concerning the news, for example, may

not require any input parameters at all from the user, but a flight search query requires

minimally at least a departure and arrival airport, and departing date. Although certain

content types may not require parameters to be obtained from the user, certain content

types may be more general than others. This leads to the issue of how much

questioning a dialogue manager should perform before deciding that a request has been

made in a general content area that is specific enough to satisfy the user. For example,

the user may ask “What is the news?” - but should the system respond with news

information, or further question the user to restrict this generic topic of news further? If

so, the user could respond with a refined query to hear the „Sports News‟ for example.

Again VoiceBrowse could prove the sports news from an RSS feed, but maybe the

system should enhance the query further, and ask the user for a particular type of sport,

such as football. It is a fine balance between generic and specific queries when there

are no boundaries to the information that can be accessed.

 112

Craig Wootton, University of Ulster

5.3 Content Manager: Design and Process

When designing the Content Manager it is important to appreciate the content details

available to it from RSS feeds. Consider once again the sample RSS feed, presented

again as Figure 5.2. Information that is readily accessible from an RSS feed includes a

short synopsis of a story, the title of a story, and the link to the full story itself. To

facilitate polling or a similarity function, it would be first necessary to create a list of

documents from all the RSS and API feeds available. This can be done

programmatically by extracting the <description> and <title> elements from the RSS

feed and inserting each into one XML file, creating an XML file such as

„documents.xml‟ that contains all the relevant information from all the available feeds –

this is illustrated in Figure 5.3.

The result of the process is a document space that can be used as the basis for a

similarity function. It was decided that the mechanism for performing this similarity

function is the widely accepted Cosine Similarity (COSIM) function, which is seen in

Figure 5.2: An Example RSS Feed

 113

Craig Wootton, University of Ulster

other dialogue systems such as call routing and spoken document retrieval systems (Ng

et al. 2006; Chu-Carroll & Carpenter 1999). COSIM is defined below by (1) and (2);

 (1)

 (2)

where W is the term weight (tw) for each term within a document d and V is the vector

magnitude of document d. By measuring the cosine of the angle between vectors from

a standard origin, such as (0,0), a numerical value between 0 and 1 can be obtained as

to how related or similar two documents are. As the angle decreases between vectors,

the closer the cosine value is to 1, as COS 0 = 1. Traditionally in Information Retrieval,

the product of the term frequency and the Inverse Document Frequency (IDF) is utilised

to obtain the tw (3);

 (3)

Figure 5.3: Document Space Creation From RSS Feeds

 114

Craig Wootton, University of Ulster

where is the term frequency of a term t in a document d, and D is the total number

of documents in the document space. defines the IDF. The process of this

similarity function is summarised in Figure 5.4:

In order for the Cosine Similarity function to be effective, the query (Q) that is being

compared to the document space (N) must be of the same format. Pre-processing is

required on both the user input side and content management side to ensure this, such as

converting all characters to lower space.

5.4 Content Manager: Content Spotter Evaluation and

Enhancements

To analyse the initial performance of the Content Spotter and the COSIM function

before implementation, a series of preliminary experiments were conducted to

investigate its effectiveness. The experimental setup is described in Table 5.1.

Figure 5.4: Content Spotter Process

 115

Craig Wootton, University of Ulster

EXPERIMENTAL SETUP

Total number of RSS feeds 22

Unique feed providers 7

Unique domains represented 14

Total number of documents

fetched

406

Table 5.1: Preliminary Experiment Setup

Throughout the experiments, 22 feeds in total from 7 different content providers, such

as BBC, Yahoo and NASA were available to the system for extracting information.

This equated to 406 different <item> elements, or documents, across 14 different

domains, where a domain is classified as a distinct topic, such as political or world

news.

Using a simple web form setup, a phrase was entered into a text box that would then be

submitted to the COSIM function. The returned ranked list of document were then

displayed in descending order on a results web page, with the highest ranked document

and its weight being displayed at the top. After each test, it was recorded if the

document suggested by the COSIM function was indeed the most relevant in the

document space. Table 5.2 presents the results of the preliminary experiments.

Out of 26 queries submitted, 87% received relevant documents returned. As it is

assumed that the user will already have some knowledge of a content story or news

event before

 116

Craig Wootton, University of Ulster

EXPERIMENTAL RESULTS

Total number of queries 26

 Overall Excluding

„Out of

Domain‟

Relevant results returned 77% 87%

Irrelevant results returned 12% 13%

„Out of domain‟ returned 11% N/A

Table 5.2: Preliminary Experiment Results

interacting with the system, out of domain queries can therefore be omitted from the

results.

Close analysis of the 13% irrelevant results returned suggested three main shortcomings

of the cosine similarity function:

 Higher tws were given to more unique terms within the document space due to

smaller values of .

 The document weightings were contaminated by the inclusion of non key word

terms such as stop words.

 Due to the matching of literal words, synonyms were not included during the

similarity calculations.

To overcome these drawbacks, different tw calculations for performing the COSIM

function were investigated to see if they offer any benefit over the benchmark tw

calculation for a spoken dialogue system.

 117

Craig Wootton, University of Ulster

To explore the effect of giving the most common terms a higher tw, the Document

Frequency (DF) was used, which gives the probability of a document containing term t.

Garcia (2006) used a similar calculation, as defined by (4):

 (4)

Although stop words were removed from the test queries by the Content Spotter during

the experiment, this was a rule based filter that identifies specified stop words and

removes them from the query. Not based on any syntactical parsing or grammatical

understanding, previous results highlight a cause for concern where stop words were not

caught by the filter, corrupting the similarity calculations. To overcome this, it was

proposed to use only the Named Entities (NEs) to create the document space. The NEs

were extracted using a freely available Named Entity Extractor
21

, and the calculation is

defined in (5):

 (5)

where n is a named entity from the query Q.

Lastly, to include associating similar words to those used in the user‟s query, the

COSIM function was enhanced with WordNet
22

, which provides both synonyms and

mathematical differences between words. The associated tw calculation is defined in

(6):

 (6)

21 http://kmi.open.ac.uk/people/jianhan/ESpotter/

22 http://wordnet.princeton.edu/

 118

Craig Wootton, University of Ulster

where Syns is the mathematical representation of a word given by WordNet, T is a key

term from Query Q, and t is a term that is a synonym of T.

To investigate the feasibility and performance of each of the tw calculations,

experiments were carried out where a query was input to each tw equation and then the

returned document marked as relevant or irrelevant. In total there were 3 sets of

COSIM experiments:

 Experiment 1 is the normal tw benchmark (3).

 Experiment 2 is the tw based on NE (5).

 Experiment 3 is the tw using WordNet to include synonyms of Q (6).

Furthermore, each of the 3 experiments were carried out twice, once with the normal

IDF (3) calculation, and once using the DF (4), resulting in 6 experiments in total for

each query. The same set of queries was used on the same document space throughout

the experiment, and the results are in Table 5.3.

 tw exp. 1 tw exp. 2 tw exp. 3

 IDF DF IDF DF IDF DF

Calculation Number 1 2 3 4 5 6

% Relevant returns 96% 78% 59% 59% 81% 40%

% Irrelevant Returns 4% 22% 41% 41% 19% 60%

Average relevant similarity 0.843 0.923 0.983 0.983 0.548 0.943

Average irrelevant similarity 0.749 0.890 0.09 0.09 0.593 0.801

Table 5.3: Enhanced COSIM Experiment Results

 119

Craig Wootton, University of Ulster

The benchmark returned 96% relevancy using the traditional tw calculations. While it

was thought that the DF, as opposed to the IDF, would provide a more reliable method

for web IR for constructing a document space, it can be seen that this actually dropped

the percentage of relevant documents to 78% in experiment 1. This was also repeated in

experiment 3, effectively signalling that this method of creating a document space was

not appropriate.

Experiment 2 shows that the percentage of relevant returns are the same using both the

DF and IDF calculations for tw calculations based on NEs. The average similarity

ratings for both relevant and irrelevant documents are also the same. Due to the low

number of key terms in use during a query when using only NEs, this led to calculations

based on a small document space and therefore no variance at all was observed when

using DF or IDF with NEs. Poor performance of the NE recognizer in use might also

be part of the reason why the percentage of relevant documents returned was so low.

To analyse the performance of tw experiment 2 against the benchmark, the results were

prepared into a scatter graph, presented as Figure 5.5.

In the scatter graph above, the y axis represents a relevant return or irrelevant return,

denoted by 1 and 0 respectively. The x axis represents each of the 27 queries used

throughout the experiments. Due to the high performance of 96% of the benchmark tw1

using IDF (calculation 1), it can be seen that most diamonds appear at value 1 on the y

0

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

Query

tw1- IDF

tw1 - DF

tw2 - IDF

tw2 - DF

Figure 5.5: Comparison of Calculations tw1 and tw2

 120

Craig Wootton, University of Ulster

axis, apart from Q = 13. As the performance of tw2 using both DF and IDF calculations

also return a negative response here, and the relevant responses of tw2 appear where

there is already a relevant response of tw1, it can be suggested that using tw2 for term

weights calculation does not provide any meaningful gain or benefit over the

benchmark.

Experiment 3 shows that, although the percent of relevant documents returned is lower

than the benchmark at 81%, analysis of the scatter graph (Figure 5.6) comparing tw

experiments 1 and 3 provides justification for the future exploration of this tw method.

Previously highlighted was Q = 13, where one of the key terms was the word „injured‟.

The benchmark matched this query to a document containing the word „injured‟ which

was inappropriate as it also contained this key term. However, the tw3 calculation

correctly matched „injured‟ to its synonym „wounded‟, and returned a more appropriate

document.

The scatter graph also shows that the outcomes for tw3-IDF returned similar documents

as the benchmark when using the IDF. The high number of „X‟ symbols on y = 0 shows

that the usage of DF to construct the document space with synonyms actually

diminishes performance. Due to experiments 1 and 3 having similar performance when

using IDF, further investigations should be carried out to advance this method of

constructing a document space, as there is some benefit to be gained here as

0

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

Query

tw1- IDF

tw1 - DF

tw3 - IDF

tw3 - DF

Figure 5.6: Comparison of Calculations tw1 and tw3

 121

Craig Wootton, University of Ulster

demonstrated by matching not only the literal word from Q. Due to the highest number

of relevant document returned by the benchmark calculation (1), it was then decided to

proceed with the design of the Content Spotter utilising this calculation.

5.5 Summary

This chapter has introduced the Content Manager, exploring its roles and functionalities

within the VoiceBrowse architecture. Expected challenges and issues were considered,

and methods to overcome these were studied. It has been shown that, by using RSS and

API feeds initially as structures of content querying and extraction, online content can

then be downloaded and parsed by the Dialogue Manager in a standard manner. This

will resolve shortcoming in current dialogue research, specifically the reliance on

purposely crafted domain representations required for dialogue management.

The Content Manager therefore caters for the majority of technical requirements

introduced in Chapter 4, and the practical hypothesis to be tested is that, by use of the

Content Manager and its operation, one dialogue manager can generically access multi-

domain types and structures from online sources. The Dialogue Manager of

VoiceBrowse, to be discussed in the following chapter, discusses the usability issues

related to the requirements introduced in Chapter 4.

Finally, preliminary testing of the Content Spotter offered initial insight into the

expected performance of the similarity function, including the study of enhanced

algorithms to improve on the benchmark. However, after careful analysis of the

preliminary results, it was decided to proceed with the benchmark, although it was felt

that resources such as WordNet do offer some benefit for future dialogue systems.

 122

Craig Wootton, University of Ulster

Chapter 6: VoiceBrowse Dialogue Manager

This chapter will introduce the dialogue management component of VoiceBrowse,

including a discussion of the anticipated causes for concern with regard to generic

dialogue management. The focus of the research involving the Dialogue Manager is on

the usability requirements specified in Chapter 4.

6.1 Dialogue Manager: Introduction

It is important to note that the system will be engaging the user in dialogue to deliver

the information requested by them from the Internet - VoiceBrowse is not a narration

system that will take web pages or provided content and read it back to the user as in

Andersen & Hjulmand (2005). A conversation will be taking place between the user

and system to allow the meaningful delivery of content through dialogue. The user will

request items of the system, but likewise, the system will request more information of

the user to continuously refine the criteria of the content request.

The Dialogue Manager and the components it interacts with within the VoiceBrowse

architecture can be seen in Figure 6.1. Of special consideration is the relationship

between the Dialogue Manager and the Content Manager, as it is the relationship

between the two that enables the generic nature of VoiceBrowse.

It is the role of the Dialogue Manager to accept the inputs from the user, and if the input

is a query for information, pass the terms to the Content Manager to perform the

similarity function. The Content Manager will then pass its suggested content back to

the Dialogue Manager for output, or if the suggested content requires parameter values

from the user to

 123

Craig Wootton, University of Ulster

proceed, such as flight details, then pass this list of parameters back to the Dialogue

Manager for collection from the user. The handling of user input is discussed further in

Section 6.4

The Dialogue Manager also controls the output of information to the user, specifically

the amount of information output. As discussed in Section 2.8, people can cognitively

handle a limited amount of information communicated through voice, and so a primary

role of the Dialogue Manager with respect to system outputs is managing the amount of

information presented to the user. Consequently mechanisms must also be available to

the user to navigate through the resulting content in a standard manner, such as

Figure 6.1: Dialogue Manager

 124

Craig Wootton, University of Ulster

functions to move back and forward in the document space. The handling of the system

outputs to the user is discussed further in Section 6.5.

6.2 Dialogue Manager: Issues and Concerns

Currently, dialogue managers in dynamic dialogue systems are created specifically for

one domain knowledge and structure. A dialogue manager created to access various

domains from unknown structures and sources has not yet been realised, and current

methods of dialogue management are not therefore appropriate. To accommodate

interactions in various domains generically, three issues arise:

 The handling of inputs from the user regarding any content type that is available

online.

 The interpretation and understanding of the request in a generic manner.

 The output of a meaningful response based on the type of content to the user.

In typical dialogue systems, the input of speech at any stage is usually predictable due

to the domain being fixed - utterances can often be handled by the use of keywords, or

open ended questions dealt with by examination of human-human conversation or past

dialogue with the system. In addition, language understanding is usually an

unambiguous task due to the interpretation being made in a specific area. For

VoiceBrowse therefore, due to multiple domains being handled, uttered words from the

user cannot be anticipated, and the input also has the potential to be ambiguous from the

viewpoint of the Dialogue Manager.

System outputs in typical dialogue systems are normally hand crafted and structured

specifically for the user guidance and direction at any given dialogue state. Care is

 125

Craig Wootton, University of Ulster

given to the outputs so that the user can know exactly how to respond, and there is no

ambiguity as to how the user can understand the request.

Once again, due to VoiceBrowse functioning with multiple domains, it is difficult to

structure output prompts both generically and specifically at the same time. An output

prompt to collect the departure city for a flight booking for example might read “Please

tell me the city from which you wish to fly”, whilst for a hotel booking it might read

“Please tell me the city in which you wish to stay”. These two outputs appear to have

some overlap in wording, hinting that generic prompts might be viable, but if the next

task to be handled by VoiceBrowse is to purchase an item of Amazon for example, then

the output would have to read “What is the item you wish to purchase?” Considering

therefore the range of tasks available to be completed online, the wording of system

prompts for most stages of the dialogue will be problematic.

Enabling the Dialogue Manager to be generic also has an effect on the initiative that can

be used. When the system is created specifically for a single domain, system initiative

can be used as the task to be completed can be anticipated, and the required stages of

dialogue defined to extract the necessary information from the user. Similar for user

initiative, language models and grammar can be created to accommodate a range of

natural language inputs based upon a fixed domain. The same dialogue states and

language understanding models cannot be easily transferred to alternative domains

without intervention from a dialogue designer.

Consider also the reasons discussed previously to use either system or user initiative.

System initiative is less flexible, but as the inputs required from the user are relatively

small at each stage, and usually from a restricted set of keywords, the possibility of

error is low. Dialogues tend to take longer however, so user initiative can be used to

 126

Craig Wootton, University of Ulster

overcome this due to the possibility of natural language inputs. However, with the

increased flexibility comes an increased chance of error during the dialogue, as

language understanding is now a more complicated process.

Additionally, it would be expected that handling generic inputs and outputs could be

catered for with less effort by system initiative than by user initiative – a simplistic

version could create a hierarchical structure of content categories, for example, which

the Dialogue Manager would lead the user to using step by step questions.

Recognising and interpreting open ended queries based on an infinite knowledge set

would obviously be more difficult.

A contrast is evident therefore between dialogue usability and management with respect

to which initiative is used – system initiative may result in longer, more repetitive

dialogues, but may be better suited to offer generic dialogues for online content. User

initiative though may offer shorter and more human like conversations, but this leads to

an increased complexity with respect to dialogue management and speech input and

interpretation. The dialogue initiatives to be studied in VoiceBrowse will be considered

in the following section.

6.3 Dialogue Manager: Proposed Dialogue Strategies

Previous research has investigated system-led and user-led dialogue approaches to

dialogue (Chu-Carroll 2000). To date, this has been within the domain of task based

dialogues, such as booking flights, hotels or tickets using a spoken dialogue system. As

yet, no studies have compared the two approaches based on a more information-based

type of dialogue, where there is not a task, or series of sub-tasks to be completed, or

even a finite set of paths to follow through the system.

 127

Craig Wootton, University of Ulster

In this domain of information-based dialogues, the definition of dialogue initiative

changes somewhat, as the parties involved in dialogue are now no longer collaborating

with one another to solve a task. Instead, the dialogue evolves more opportunistically,

based on the previous utterances and what the user has now learnt from the dialogue.

For example, they may be more interested in one news story than another, and therefore

would request more information on it. Alternatively, nothing in the current interaction

may be of interest, and a complete change of topic may occur, such as to sports stories.

As the dialogue evolves according to the user‟s interests, the user will always have the

initiative in the dialogue, requesting information of the system, and then making further

requests based on the response.

The traditional classification therefore of dialogue into system or user led initiative is

not appropriate for information-based dialogues. Using the foundations of both

approaches however, one could classify such dialogues as flexible or inflexible, or an

open versus closed approach to dialogue.

An „open‟ approach to dialogue can be defined as one where the user is not restricted in

how they may say things. Questions and requests can be asked of the dialogue system

using natural language, the content of which is required to be in the domains currently

monitored by the system. A „closed‟ approach is one where the utterances allowed to be

spoken by the user are from a finite set of utterances understood by the system, similar

to a command and control type of system. The open approach is therefore more flexible

and natural than the closed approach.

To study the effect of dialogue initiative on usability with regard to browsing the

Internet through voice, it has been proposed to use two different dialogue strategies,

namely „closed‟ and „open‟. To be a fair comparison, the system should be identical in

 128

Craig Wootton, University of Ulster

every way, and the modular architecture will support this as only the objects

implementing the dialogue manager will be changed during the comparison.

To facilitate the development of a less flexible initiative, grammars need to be

constructed that will allow the user to speak key phrases and commands that the system

can recognise and interpret. This is discussed in the following section, followed by the

handling of system outputs in Section 6.5.

6.4 Dialogue Manager: Handling User Inputs

The dialogue manager receives the input string recognised by the ASR and its function

is then to decide what action to perform next in the interaction. If the speaker‟s intent is

interpreted as referring to a task-based interaction, then more information may be

needed from the user. If it is a request for content, or all required information has been

elicited from the user and understood by the Dialogue Manager, then the request will be

passed to the Content Manager to retrieve the information from the Internet.

If the closed strategy is in use, then the input should be a topic or provider with which a

feed can be uniquely identified. It is proposed to use the <title> element of the RSS

feeds, held as <feedTitle> in the document space, to create a grammar that will allow

the input of either a provider name or news category. This also provides a means of

matching the input directly onto the document space - illustrated in Figure 6.2. This

will allow the user to utter such phrases as “BBC News”, or “Football Headlines”.

The Content Manager will then return only those documents in the document space

whose feed title matches the query. If the query is too broad at this stage, the Content

Manager will indicate this to the Dialogue Manager which will then output the possible

 129

Craig Wootton, University of Ulster

feeds to the user, and ask for a more specific term - for example “You said news. Do

you mean sports or entertainment news?”.

If the open dialogue strategy is in use, the Content Manager creates a document space of

stories from the different <description> elements from the RSS feeds in the

VoiceBrowse environment. This document space will be used instead of the <feed>

elements to create a grammar that will allow questions based on its contents. The open

ended question recognised from the user is then input to the Content Spotter, which uses

a Cosine Similarity function to return a ranked list of weighted documents based on

their similarity to the current query. The query is first prepared by removing specified

stop words and converting to lower case, to create a query form similar to that of the

documents. The topmost related document is then output to the user, followed by the

next if requested, and so on.

Figure 6.2: Grammar Creation In The Dialogue Manager

 130

Craig Wootton, University of Ulster

Independent of dialogue strategy, while the short <description> elements are being

output, the user can ask for more information for any story by stating the story‟s number

in the list. The next step is then to fetch the main story or content body from the

provider‟s website.

For task based dialogues, the Content Manager identities the API to handle the current

task. With each API that is included in the environment, specified parameters are used

to create a dialogue that will allow the user to elicit values for these required

parameters. Once each required parameter has a value, the attribute-value pairs can be

packaged into an HTTP request and sent to the relevant provider.

6.5 Dialogue Manager: Handling System Outputs

In a traditional dialogue system developed for one specific task, or those developed for

a static domain, outputs are easily anticipated and catered for through the use of

templates at each dialogue state. However, as VoiceBrowse is both multi-domain and

dynamic, the output will change at each state and for each user.

Furthermore the output will also be dependent upon content - content requested by the

user is required to be delivered in a meaningful way that can be easily understood by the

user. This preparation of content is complicated due to the wide range of different types

of content that the user could request - content can come in many different shapes and

forms that must be handled by the system. Each content type will present its own

requirements to the system, when being delivered to the user. For example, a news

article will be too long to be delivered as a whole article, and so will need to be

summarised before being delivered. Likewise, if a user searched for flights,

VoiceBrowse would have to output a possible long list of times and dates to the user – a

 131

Craig Wootton, University of Ulster

Figure 6.3: Outputting Content To The User

content item that may be best summarised by grouping flights together based on some

criterion – for example “There are 5 flights in the morning”.

To understand how it is possible to handle the system outputs, it is first necessary to

understand which content is available to the Dialogue Manager and how it is

represented. The output of the Dialogue Manager is provided by the output of the

Content Manager - an XML file containing either a list of <documents> from the

Content Spotter or a list of results from the API response. If the open-ended approach

is in use, the XML file is a ranked list of related documents. The content of the

<description> element of the topmost related document is output to the user by inserting

the text into a VoiceXML <prompt>, followed by the next story if requested, and so on.

With the system-directed strategy, it is simply a linear list of documents output in

similar fashion, illustrated in Figure 6.3.

The output from the Content Manager in either case is then a structured XML document

of results – each result containing the <description> element, and also the <source> of

 132

Craig Wootton, University of Ulster

the full story. The Dialogue Manager will output each result in a manageable amount,

such as three at a time to the user. If the user requests more information about a

particular story, the Dialogue Manager can then send the <source> of that story back to

the Content Manager, which proceeds to access the main body of content from the

story‟s web page (see Chapter 5). This web page is then output to the user, also in a

manageable amount such as three <p> tags at a time.

With the API response, VoiceBrowse extracts the results from the XML response and

presents these to the user five at a time. Future work in this respect will allow the user

a finer grain of control over the presentation of results, such as sorting and filtering,

discussed in Chapter 9.

6.6 Summary

Generic dialogue management in the capacity of online browsing poses many

challenges and concerns that must be overcome: User inputs cannot generally be

anticipated; language interpretation has the potential to be ambiguous; and system

outputs must be worded both non-specifically yet still be effective in eliciting the

expected utterance from the user.

The cooperation of the Dialogue Manager with the Content Manager will be pivotal in

overcoming these issues and realising the generic nature of VoiceBrowse. The entire

workflow of VoiceBrowse, which is based on RSS and API feeds, can now be

amalgamated as is shown in Figure 6.4.

The workflow shows that the process starts with the RSS and API feeds, which make up

the core of the system, providing a standard and structured means to cater for dialogue

aspects, including grammar creation and language interpretation. By using appropriate

 133

Craig Wootton, University of Ulster

procedural code, a document space of documents and associated titles can be created.

An input from the user is received by the Dialogue Manager, which has used this

document space to create the grammar required to recognise and understand the user‟s

utterance. The execution from this point then depends on the dialogue strategy in use.

If the closed dialogue version is being used, then the Dialogue Manager will match the

user‟s utterance to the grammar created from the Feed Titles. This will allow the user to

choose content, either from a specific provider, such as „BBC‟ or „CNN‟, or by

category, such as „Sports‟ or „World‟ News. This is possible as Feed Titles provide

both the provider and category of news that the feed is related to – an example would be

„BBC Football News‟.

The Content Manager can then use the document space to match the documents with the

same <feedTitle> element as the user‟s utterance. A linear list of results is then output

back to the user in a manageable amount, for example three <description> elements at a

time.

Figure 6.4: VoiceBrowse Workflow

Output

 134

Craig Wootton, University of Ulster

However, if the open version of VoiceBrowse is in use, then the input from the user is

an open ended question, with the words from the <description> elements in the

document space being used as an aid to improve recognition of the ASR, as it is highly

probably that these words will form the basis of queries uttered by the user. Once

recognised, the string is passed to the Content Manager, which performs the COSINE

Similarity function on the document space, using the user‟s utterance as its input.

Output to the user then proceeds as in the closed approach, although the list of

documents to be output is now in a ranked order.

This concludes the design phase of the research: the literature has been explored and

shortcomings and limitations of current research noted; the inadequacies identified

relating to dynamic dialogue systems were noted, and requirements created to fulfil

these failings with regard to the browsing of online content through dialogue; and an

architecture has been developed that will realise the listed requirements, and its

components have been surveyed in depth. The next chapter introduces the

implementation phase in which the conceptual designs are transformed into a realisation

of the VoiceBrowse system.

 135

Craig Wootton, University of Ulster

Chapter 7: VoiceBrowse Implementation

Once the VoiceBrowse architecture had been conceptually developed, and research

questions to be addressed concisely noted, current dialogue technologies and

implementations were explored to gain knowledge of the available tools to realise

VoiceBrowse. During this stage, various languages, reusable components and open

source architectures were studied, and each of their advantages and disadvantages noted

with regarding to implementing a system like VoiceBrowse – the most relevant of these

are introduced in Section 7.1. A discussion of the chosen technology of VoiceXML

follows including the work taken to convert VoiceBrowse from a theoretical

architecture to relevant VoiceXML Call Flow Diagrams (Section 7.2) and associated

prompt designs (Section 7.3). In the remainder of the chapter, implementing

VoiceBrowse will be discussed in Sections 7.4 - 7.8, and the challenges and issues

encountered are discussed in Section 7.9. Example dialogues with VoiceBrowse after

the implementation are included as Section 7.10.

7.1 Current Dialogue Technologies

In order to realise the VoiceBrowse architecture, a number of available tools and

options for each of the main components of a spoken dialogue system were

investigated, from speech recognition engines through to Text-To-Speech technologies.

In addition, supporting technologies, such as programming and scripting languages, and

database management systems and associated query languages were also explored.

 136

Craig Wootton, University of Ulster

Automatic Speech Recognition (ASR) is available in many open source as well as

proprietary implementations. A widely used open source recogniser is the Hidden

Markov Model Toolkit (HTK)
23

– a C implemented speech recogniser. A Java

alternative is Sphinx 4
24

, the latest version of the widely used CMU Sphinx

Recogniser
25

, which is a commonly used ASR in research projects. Developed and

maintained by Carnegie-Mellon University, it offers a high degree of portability and

flexibility due to its implementation in the Java programming language. It is a speaker

independent ASR that can be updated with language models produced by its associated

program SimpleLM
26

. A recent evolution of Sphinx has seen the development of

PocketSphinx
27

, a more lightweight ASR to permit effective speech recognition on

mobile devices.

However, it is common that open source programs are not compiled or readily available

in an executable format, and so open source ASRs, including Sphinx, often have

complicated and complex protocols that are required for installation and operation to

mimic the development environment. To overcome these problems, proprietary

solutions have been developed that are available to be used „out of the box‟ – minimum

setup and installation is required, and they can be used in similar fashion to other

programming languages. A popular proprietary option is the Microsoft Speech

23
 http://htk.eng.cam.ac.uk/

24
 http://cmusphinx.sourceforge.net/sphinx4/

25
 http://cmusphinx.sourceforge.net/html/cmusphinx.php

26
 http://cmusphinx.sourceforge.net/html/download.php#SimpleLM

27
 http://www.speech.cs.cmu.edu/pocketsphinx/

 137

Craig Wootton, University of Ulster

Recogniser
28

, included as a component of the Windows XP and Vista Operating

Systems. Primarily used as the ASR for speech based interfaces to the operating

systems, it is also possible to use the speech recogniser programmatically with use of

the SAPI, or Speech Application Programming Interface
29

. This has the benefit of

integrating with speech applications seamlessly, with no additional prerequisites or

components required. Other proprietary options are available, such as IBM‟s

ViaVoice
30

, or Nuance‟s Dragon Naturally Speaking
31

. However, due to their

commercial development, proprietary ASRs tend to offer limited scope as to the extent

to which they can be tailored, and most are available only as „out of the box‟

recognisers.

The same classification can also be used with regard to output technologies – Text-To-

Speech (TTS) engines are available as both open source and proprietary packages.

Most notable with regard to open source TTS engines is Festival TTS
32

, which has

appeared as part of many dialogue systems in research (Bohus & Rudnicky 2005a;

Hanna et al. 2005). Originally written in C++, APIs are now available for Festival to

enable its implementation on various other platforms. A native Java alternative also

worth a mention is FreeTTS
33

, another example of another popular TTS engine.

Like their freely available ASR counterparts, the benefits that a developer gains in

flexibility and customisation with using an open source TTS have to be balanced against

28
 http://www.microsoft.com/speech/

29 http://www.microsoft.com/downloads/details.aspx?FamilyID=5e86ec97-40a7-453f-b0ee-

6583171b4530&DisplayLang=en

30 http://www-01.ibm.com/software/pervasive/embedded_viavoice/

31 http://www.nuance.co.uk/naturallyspeaking/

32 http://www.cstr.ed.ac.uk/projects/festival/

33 http://freetts.sourceforge.net/docs/index.php

 138

Craig Wootton, University of Ulster

the benefits of the simplicity and ease of an implementation that a proprietary product

can offer. Cepstral
34

 is an example of a commercial TTS engine that can be installed

and utilised on a particular system within minutes by running the appropriate executable

file. Others include Loquendo TTS
35

 and AT&T Natural Voices
36

.

Many dialogue architectures are developed in a modular paradigm, allowing the

substitution of different implementations for each component - the aforementioned

system by Bohus & Rudnicky (2005) is a typical example of such a system.

An alternative to incorporating together many different components of a dialogue

system to form a complete architecture is to utilise the VoiceXML standard, for which

there are many platforms available for implementation. Some VoiceXML platforms

consist not only of the required VoiceXML Interpreter and associated technologies, but

also of ASR and TTS engines to offer a holistic solution for a spoken dialogue

system
37+38

. Such platforms can provide developers with a solution that offers reduced

system deployment time due to the inclusion of all the required components.

Web based VoiceXML platforms are also available
39+40

, where developers can uploaded

VoiceXML to a remote server – interactions can either then be text based, or speech

enabled by using Voice Over IP telephony software, such as Skype
41

. This approach

offers the additional benefit of not requiring any specialist hardware or software to run

34 http://cepstral.com/

35 http://www.loquendo.com/en/technology/TTS.htm

36 http://www.naturalvoices.att.com/

37 http://www.voxeo.com/products/voicexml-ivr-platform.jsp

38 http://www-01.ibm.com/software/pervasive/voice_toolkit/

39 http://bevocal.com

40 https://studio.tellme.com/

41 http://www.skype.com

 139

Craig Wootton, University of Ulster

the VoiceXML platform, although such web based platforms usually offer a limited

form of functionality with regard to what can be achieved through VoiceXML – lack of

scripting language and database support for example. Such scripting and database

technologies are often used to complement VoiceXML solutions to realise a „dynamic‟

system. Similar to web programming techniques, this allows the amalgamation of a

spoken dialogue system with a Database Management System, providing real time

information to end users of the system.

7.2 VoiceBrowse Implementation: VoiceXML and Call Flow Diagrams

Following an exploration of a range of current dialogue technologies and associated

technologies, it was felt that a VoiceXML implementation of VoiceBrowse was

preferable for several reasons:

 It offers compliance with W3C standards, promoting a current standard

specification for dialogue systems and maintenance sustainability, and allowing

future development and collaboration with external parties.

 The availability of large amounts of literature helps to resolve issues and

problems encountered with the VoiceXML specification.

 A VoiceXML system can be implemented on a range of devices in a variety of

formats, for example on a standalone system on a personal computer, a

telephone based system accessed remotely, or the possibility of installation on

small form computers, such as mobile devices, including PDAs.

 By choosing an appropriate VoiceXML platform, required prerequisite

components for a dialogue system, such as a speech recognition and TTS engine

etc., will be integrated into the platform.

 140

Craig Wootton, University of Ulster

 VoiceXML platforms are themselves based on web technology paradigms, a

solution that will support the technologies involved in the delivery of online

content through dialogue.

As stated previously, there are various VoiceXML platforms to choose from, including

commercial solutions, freely available solutions and web based solutions – each of

which can offer benefits over other solutions. The choice of platform is therefore often

dependent on the required requirements of the system, which for VoiceBrowse can be

summarised as:

 Ability to call the system over the phone.

 Ability to create dynamic scripts using an appropriate scripting language.

 For economic reasons, the platform should not be expensive to obtain or use.

 Ability to record calls to the system for later analysis.

 Ability to install the platform on the Windows XP Operating System.

Considering the above requirements, it was decided to proceed with Voxeo Prophecy

which satisfies all the above points. Other solutions were discounted, as they could

either not easily be set up for external telephone calls to the system without additional

hardware and software (IBM Voice Tool Kit), or that they were web based, and

therefore unable to run executables and scripting languages due to security issues - for

example, BeVocal.

The Voxeo Platform itself can be freely downloaded from the Voxeo website, and

installation is a simple matter of running the executable file. Once installed, calls to the

 141

Craig Wootton, University of Ulster

platform can either be through a locally installed SIP phone, or externally through

Voice Over IP (VOIP), for example with the use of Skype
42

. The platform also comes

with its own web server which can execute PHP scripts, but due to the writer having

more experience with .Net technologies for web programming; it was felt that the use of

ASP.NET
43

 would better facilitate the development.

A requirement for the execution of ASP.NET scripts was a compatible web server,

where the ASP scripts would reside and be accessible to the Prophecy platform during

runtime. Furthermore, as ASP.NET itself is based on .NET technology, a native

Windows technology, an obvious choice of web server was the bundled Windows

Internet Information Service (IIS), provided with most Windows packages. To

complete the development environment, an ASP.NET editor was preferred to a simple

text editor, due to the associated syntactical debugging and file management facilities

included with most professional scripting editors. With the choice of ASP.NET and IIS

already made, a Microsoft Integrated Development Environment (IDE) was thought

best and Microsoft Visual Web Developer 2005 Edition
44

 was chosen for its suitability

and ease of use. In addition, the package also came with Microsoft SQL Server 2005

Express Edition
45

 to cater for any data storage needs that may arise.

The VoiceBrowse environment is shown graphically in Figure 7.1. During an

interaction, the workflow is as follows: the user initiates a call to VoiceBrowse, either

through a telephone or smart mobile device, or embedded microphone in a pervasive

42 http://www.skype.com

43 http://www.asp.net/

44 http://www.microsoft.com/express/2005/download/default.aspx

45 http://www.microsoft.com/sql/editions/express/default.mspx

 142

Craig Wootton, University of Ulster

environment. This call and all calls to the VoiceXML server are passed to the Web

Server (IIS), which controls the flow of the dialogue, and generates the VoiceXML

dynamically at runtime through ASP.NET scripts. The ASP.NET scripts also have

access to a database server (SQL Server) for any data storage and retrieval needs. Once

generated, the VoiceXML is interpreted by the Prophecy server, and output information

is relayed back to the user, and the dialogue enters the next stage of the interaction.

With each element of the development environment installed and verified as working,

the first step of the process was to create the specified files from the call flow diagrams.

In addition, to contain generic functions and logic that would be available to the

VoiceXML files throughout the interaction, dialogueManager.aspx and

contentManager.aspx were also created. This allowed the reuse of code across various

files, maintaining a coherent and consistent implementation.

Figure 7.1: VoiceBrowse Environment

 143

Craig Wootton, University of Ulster

Having decided on the implementation platform for VoiceBrowse, the next stage of

development was to transform the conceptual architecture of VoiceBrowse into a

relevant form of system design diagram, such as an object class hierarchy. VoiceXML

has an associated design diagram known as Call Flow Diagrams, showing the

interaction paths and transitions through a system. Figure 7.2 shows the initial Call

Flow Diagram produced for VoiceBrowse, transformed from the architecture presented

in Figure 4.6.

Figure 7.2: VoiceBrowse Call Flow Diagram

 144

Craig Wootton, University of Ulster

A common initial file in any VoiceXML or dialogue system is the welcome prompt,

designed to convey the system‟s functionality to the user, and communicate the

available help functions available throughout the interaction. In a VoiceXML system

this is often known as the „root‟ document, and so becomes root.aspx in the

VoiceBrowse environment.

Given the two different types of dialogue that VoiceBrowse aims to accommodate,

narrative and task based, it was initially decided to handle the design of the flow for

each dialogue type separately. Menu.aspx is the first time that a user is expected to

speak to VoiceBrowse, and it appears sequentially after the welcome prompt. Here the

user is expected to say if he/she wishes to complete a task or engage in a narrative

dialogue. It is good dialogue usability practice to provide help at each stage in the

dialogue, and so an advanced form of help was made available at this initial stage. By

requesting help, listFeeds.aspx was available to list the content currently available in

VoiceBrowse, for both narrative and task based dialogues.

Depending on the user‟s utterance, the dialogue then transitions to one of two different

paths: one to handle narrative dialogues (informationStart.aspx); or one to handle task

based dialogues (taskStart.aspx). informationStart.aspx prompts the user to either state

the content provider or category they wish to access, or it allows the user to ask an open

ended question, depending on which implementation of VoiceBrowse is active. The

next step in the dialogue flow is to output the results from the search to the user, and if

the user requests more information regarding a particular item of content, VoiceBrowse

should access this from the main web page and output this to the user.

listContentItems.aspx and fetchStory.aspx provide this functionality respectively.

 145

Craig Wootton, University of Ulster

Alternatively, if the user had requested to complete a task, then taskStart.aspx retrieves

from the user the particular API that they wish to engage in dialogue with. Based on

this response, apiCollectRequest,aspx creates a VoiceXML form to collect the required

parameters of the API, before it is submitted to the relevant server. Once the API

response has been received back from the vendor, apiResponse.aspx outputs the results

to the user. If the user wishes to proceed with the task, getPersonalDetails.aspx collects

the required details to continue with the task.

With the initial call flow diagram produced, the next step of implementation was to

create the initial prompts of the system. Prompt design is an important step of any

dialogue development, and can assist the developer in creating the final call flow of the

system, as often the prompt design will highlight changes in the call flow that are

necessary to accommodate a higher degree of usability. The prompt design for

VoiceBrowse is discussed in detail in the following section, but this did lead to a

revised version of the initial call flow diagram, which is presented as Figure 7.3.

The major amendment to the initial call flow diagram is the absence of menu.aspx,

removing the differentiation of a narrative or a task based dialogue from the user‟s

viewpoint. This is in response to the prompt design for menu.aspx, and the problematic

wording of the menu prompt requesting the user to make a distinction between the two

different types of dialogue. The wording was problematic for two reasons: that

appropriate, concise words suitable for a dialogue prompt could not be determined to

convey the different meaning of the two different types of dialogue – for example

asking the user to decide between task and information would not be appropriate, as

seeking information regarding flight times could be thought of as an information-based

 146

Craig Wootton, University of Ulster

dialogue, but in reality it is a task based dialogue; and that end users would not

understand the division between the two types of dialogue and the necessity for it.

To overcome this issue, the call flow diagram was revised as above with the removal of

menu.aspx, and a programmatical solution was sought to classify the user‟s request as

either information or task based, removing the onus from the user to distinguish

between the two different types of dialogue handled by VoiceBrowse. The prompt for

informationStart.aspx was generic, allowing the user to request either narrative or task

based information at this point, such as the news or to purchase a cinema ticket, without

Figure 7.3: VoiceBrowse Revised Call Flow Diagram

 147

Craig Wootton, University of Ulster

having to explicitly state beforehand if the dialogue is to be information or task based.

Depending on the classification of the utterance by the VoiceBrowse program, the

dialogue then makes the transition to the two separate dialogues paths as before.

However, in addition, the call flow diagram was further revised by the inclusion of a

new file, disambiguate.aspx. In response to the prompt design, it was felt that there

would be the possibility of a user under-specifying a request for information at the

initial informationStart.aspx state. The user might say „news‟, for example, which

could be considered a generic term, and consequently the wrong sub-type of news

would be returned to the user by VoiceBrowse. Disambiguate.aspx therefore verifies

that a user‟s utterance will return a unique content set from the RSS feeds, and if not,

prompts the user for more specific information, e.g., to refine news further as „sports‟ or

entertainment‟ news. With the call flow diagram now fixed, and the associated prompt

designs resolved also (see Section 7.3), VoiceBrowse was then implemented using the

chosen technologies and platform, discussed from Section 7.4 onwards.

7.3 VoiceBrowse Implementation: Prompt Design

The prompt designs are key to the usability of a dialogue system, as the prompts are the

„front end‟ of the system that the user will interact with. Similar to judging a graphical

interface on the aesthetical appeal, it is often the content of the system prompts that will

provide the basis for the user‟s judgement of the system. Furthermore, prompts can

assist the language understanding of a system by constraining the user input to the

allowable utterances of the language understanding engine at the particular dialogue

state.

For example, consider the first state of VoiceBrowse where user input is allowed.

Presented above in the call flow design, it is the function of the informationStart.aspx

 148

Craig Wootton, University of Ulster

state to convey to the user the function of VoiceBrowse, the available options for

retrieving information, and the allowable inputs at this starting stage. If this is to be

implemented in the closed version of VoiceBrowse, then the allowable inputs are a

small set of key words, dynamically created from the titles of the current feeds in the

environment. Taking into account that the allowable tasks, content sources and types

are virtually unlimited; creating a generic prompt to communicate this to the user can be

problematic. If VoiceBrowse were created solely for a cinema booking domain, the

first prompt could arguably be “What cinema would you like information for?”

However, considering that VoiceBrowse hypothetically in the next interaction could be

requested to retrieve flight information, this prompt specific to cinema bookings is now

not appropriate.

To make the prompt generic, it therefore must not only be task or content specific, but

still express to the user that the system is expecting the name of a cinema, flight

company or another appropriate vendor or content provider, such as CNN or BBC for

example. The words „vendor‟ or „feed‟ may not be known by the end users who will

use the system, so more appropriate words are needed. Similar considerations are given

to the prompts throughout the dialogue states, and a detailed description of the prompt

design and their rationale are included as Table 7.1 overleaf.

 149

Craig Wootton, University of Ulster

Prompt VoiceXML Document Expected Response and

Comments

1 Welcome to

VoiceBrowse! To return

to this point. Say main

menu at any time.

root.aspx No response. A welcome

prompt and introduces the

„main menu‟ keyword.

2 Say help at anytime for

assistance.

Please say the provider

and also category if you

wish, or if you want to

know what is available,

say list!

informationStart.aspx This is the starting point of an

interaction in VoiceBrowse.

The user should utter the name

of a provider, for example

BBC or eBay, or the category

of information they desire,

such as „Football News‟ or

„World News‟.

Alternatively, the user can say

help for more information of

what is required at this stage,

or additionally they can hear

what information is available

simply by saying list.

3 Please say the name of a

provider, such as BBC or

Yahoo. You can also say

a specific category, such

as News or Sport. If you

do not know what

providers and categories

are available, say list.

informationStart.aspx This prompt will execute if the

user says the keyword „help‟

during the previous prompt

(#2)

 150

Craig Wootton, University of Ulster

4 Possible choices are:

Feed 1, BBC Sport News.

Feed 2, BBC Business

News. Feed 3, BBC

Headline News. Please

say repeat, or more. If

you have finished with the

help, say done.

listFeeds.aspx If the user says the keyword

„list‟ in prompt 2, they are

taken to this prompt. The

purpose of this prompt is to

make known to the user what

„feeds‟ are currently available

to the system three at a time.

Expected response is „repeat‟

to hear the three items again, or

„more‟ to hear the next 3 items.

They can also say „done‟ to

exit this prompt and return to

prompt 2.

5 You have requested

VALUE. I have found X

different feeds. Options

include: X1, X2, ..., XN.

Please say the specific

topic or provider.

disambiguate.aspx If the value the user elicited at

prompt 2 has identified >1

feed, this prompt makes the

user aware of this. The prompt

then gives the opportunity to

provide some more specific

criteria. For example, if the

user said „BBC News‟ there

might be 6 different feeds

matching BBC News. The

prompt will utter this to the

user, followed by the title of

the different feeds, such as

„BBC Sport News‟, „BBC

Entertainment News‟, „BBC

World News‟ etc.

 151

Craig Wootton, University of Ulster

6 I haven't found any stories

matching your query, let's

start again.

disambiguate.aspx This prompt will fire if no

feeds are found matching the

user‟s utterance from prompt 2.

Execution will then return to

informationStart.aspx.

7 OK, I have found FEED

TITLE. There are X

stories, and I will now

read them out 3 at a time.

Say the story number to

access the full story, or

say repeat, next or back.

Story 1.....Story 2.....Story

3.....

listContentItems.aspx Once a specific feed has been

identified, stories from that

feed are listed 3 at a time.

Once again, the user can say

back, next or repeat in a similar

fashion to prompt 4. This will

either: go back to the previous

stage of the dialogue; list the

next 3 stories from the current

feed; or repeat the current 3

stories uttered to the user.

Alternatively, if the user

desires more information

regarding a particular story,

they can utter the associated

story number.

8 OK, you want story X.

One moment.

listContentItems.aspx A short prompt to indicate to

the user that the system has

captured and understood the

story number elicited by the

user in prompt 7.

 152

Craig Wootton, University of Ulster

9 PARAGRAPH 1.

PARAGRAPH 2.

PARAGRAPH 3.

Please say repeat, next,

back, or main menu.

fetchMainContent.aspx The purpose of this prompt is

to output the requested story

fetched from the online source

three paragraphs at a time. The

prompt begins and ends by

reminding the user of the

keywords that they can say to

move on with the dialogue.

Similar to previous prompts

(#7) the user can say repeat

next or back.

Main menu is also active still,

and provides the opportunity

for the user to start a new

dialogue with VoiceBrowse by

returning them to the main

menu (prompt #2)

11 Please tell me the X

apiCollectRequest.aspx Once a specific API has been

identified, the system asks the

user for each of the required

parameters for its operation.

Worded to ensure the generic

capture of parameters.

12 Did you say X? apiCollectRequest.aspx After the system has collected

the parameter, its value will be

confirmed. The expected

response here is „yes‟ or „no‟.

 153

Craig Wootton, University of Ulster

14 Ok. One second.

apiCollectRequest.aspx Confirmatory message output

to the user to acknowledge that

all required parameter values

have now been collected and

confirmed by the system.

15 There are X results.

Result 1, X1. Result 2,

X2. Result 3, X3.

You can say repeat, next,

or back at anytime. ,

apiResponse.aspx The purpose of this prompt is

to utter the API results to the

user, three results at a time.

The prompt begins by

reminding the user of the

keywords that they can say to

move through the result set.

Similar to previous prompts

(#7), the user can say back,

next or repeat in a similar

fashion to prompt 4. This will

either: go back to the previous

stage of the dialogue; list the

next 3 results; or repeat the

current 3 results uttered to the

user.

Alternatively, if the user

desires more information

regarding a particular story,

they can utter the associated

story number.

Table 7.1: VoiceBrowse Prompt Design

 154

Craig Wootton, University of Ulster

7.4 VoiceBrowse Implementation: Content Manager

Implementation was done in four phases, described in Sections 7.4 to 7.8 - functions for

the Content Manager and Dialogue Manager were developed first of all, followed by the

VoiceXML Scripts to handle the request and outputting of information based dialogues,

and finally the handling of task based dialogues.

The Content Manager makes available to the system throughout the interaction

functions related to the management of online information, such as making the content

from the RSS and API feeds available, retrieving the main body of content from a

source web page, and creating the document space to be used during the Cosine

Similarity function.

Paramount to the operation of the Content Manager and the functionality of

VoiceBrowse is the mechanism for the inclusion of RSS and API feeds within the

VoiceBrowse environment. As RSS feeds are available by accessing a source URL, the

address of the URL is therefore required to be made available to VoiceBrowse. The

RSS feed at this address can then be accessed by parsing the XML at the URL‟s

location, which is standard. A standard XML specification representing an RSS and its

URL was devised for VoiceBrowse, so that the Content Manager can access different

RSS feeds in the same way. The XML specification to represent a RSS feed in

VoiceBrowse is given in Code Excerpt 1:

The XML shown above is a hierarchical feed representation, specifying first of all that

the XML contains a „feed‟ plug in for use in VoiceBrowse, and then that the feed is of

type RSS. API specifications are not of a standard representation (see Chapter 2) and so

 155

Craig Wootton, University of Ulster

to make the operation of an API generic with the Content Spotter, it is necessary to first

understand that API usage consists of two aspects: an XML specification, that is

required to be submitted to a specified server; and required parameters, that are to be

inserted into the XML specification. With this is mind, the following XML

specification was devised to represent an API feed plug in for VoiceBrowse, shown in

Code Excerpt 2.

Code Excerpt 2 shows the API specification for an eBay API and it makes known to the

Content Manager that one parameter for this API operation is required to be completed

by the user, namely the „item‟ parameter. The XPATH contained as the node‟s value is

the path where the Content Manager is required to insert the elicited information into

the API schema.

The <schema> and <url> elements respectively inform the Content Manager where the

API schema can be found on the local hard drive, and then where the API must be sent

to once the required parameters have been gathered from the user.

In addition, it is also a common feature of an API request that so called „header‟

parameters are attached to the API specification. These are denoted in the above

<parameters> by use of a „£‟ symbol in front of the name attribute. During parsing, the

<feed>

 <rss>

 <source>

<url>http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/business

/rss.xml</url>

 </source>

 </rss>

</feed>

Code Excerpt 1: API VoiceBrowse Specification

 156

Craig Wootton, University of Ulster

Content Manager will ignore these parameters when collecting information from the

user, but instead use the value of the nodes as header information. For example, the

first head parameter is „X-EBAY-API-COMPATIBILITY-LEVEL‟, and will take the

value of 433.

Complementing the <request> information of the API specification is the <response>

information, used once the Content Manager has made the API request and receives the

results back from the server in the form of an XML file. The <response> parameters

advise the Content Manager of the XPATH to be used to retrieve the relevant parts of

the results file, which are in turn output to the user via a VoiceXML form.

<feed>

 <api title="ebay search">

 <request>

 <schema>feeds\APIs\ebaySearchRequest.xml</schema>

 <url>https://api.ebay.com/ws/api.dll</url>

 <parameter name="item">GetSearchResultsRequest/Query</parameter>

 <parameter name="£X-EBAY-API-COMPATIBILITY-LEVEL">433</parameter>

 <parameter name="£X-EBAY-API-DEV-

NAME">R2DJD8XR5XUB61JL13O817F74V3EG3</parameter>

 <parameter name="£X-EBAY-API-APP-

NAME">CRAIGWOOTTW4O3AG1AE6KUVF43MR38</parameter>

 <parameter name="£X-EBAY-API-CERT-NAME">U11QJF8O63D$293555B4F-

JQJPNPZ9</parameter>

 <parameter name="£X-EBAY-API-CALL-

NAME">GetSearchResults</parameter>

 <parameter name="£X-EBAY-API-SITEID">3</parameter>

 <parameter name="$xmlns">ebay

urn:ebay:apis:eBLBaseComponents</parameter>

 </request>

 <response>

 <parameter name="title">Ebay search</parameter>

 <parameter name="list">//ebay:Title</parameter>

 </response>

 </api>

</feed>

Code Excerpt 2: VoiceBrowse API Specification

 157

Craig Wootton, University of Ulster

To promote the extensibility of VoiceBrowse, each feed was specified in a separate file,

allowing feeds to be added and removed from the system without affecting other parts

of the code or the system‟s functionality. It was required then to integrate the

information from the various feed files into one XML file for easy access and parsing

by the Content Manager. To achieve this, the Content Manager loads the feed XML

files one at a time, all held in the „feeds‟ directory, and then inserts the information into

a document „feeds.xml‟. Any time the feeds directory is changed, feeds.xml is cleared,

and the function executed again to populate the file with the latest information. Code

Excerpt 3 shows the ASP.NET code to realise this.

1. xmlTempDoc.WriteStartElement("feeds")
2. Dim currentDir As ObjectModel.ReadOnlyCollection(Of String) =

My.Computer.FileSystem.GetFiles(System.Configuration.Configuration

Manager.AppSettings("root") + "feeds")

3. For Each oneFile As String In currentDir
4. xmlTempDoc.WriteStartElement("feed")
5. xpathDoc = New XPathDocument(oneFile)
6. xmlTempDoc.WriteStartElement("filename")
7. xmlTempDoc.WriteString(oneFile)
8. xmlTempDoc.WriteEndElement()
9. If xmlNav.Evaluate("count(//rss)") > 0 Then

10. xpathDoc = New XpathDocument(xmlNav.SelectSingleNode("/
feed/rss/source/url").Value.ToString)

11. xmlTempDoc.WriteStartElement("type")
12. xmlTempDoc.WriteString("rss")
13. xmlTempDoc.WriteEndElement() '</type>
14. xmlTempDoc.WriteStartElement("title")
15. xmlTempDoc.WriteString(xmlNav.Evaluate("string(normalize-

space(string(translate(/rss/channel/title,'£$*%^&*()!@:;<>=-

#~`¬¦€|\/',''))))").ToString.ToLower)

16. xmlTempDoc.WriteEndElement() '</title>
17. Else

18. xmlTempDoc.WriteStartElement("type")
19. xmlTempDoc.WriteString("api")
20. xmlTempDoc.WriteEndElement() '</type>
21. xmlTempDoc.WriteStartElement("title")
22. xmlTempDoc.WriteString(xmlNav.SelectSingleNode("feed/api").G

etAttribute("title", "").ToLower)

23. xmlTempDoc.WriteEndElement() '</title>
24. End If
25. xmlTempDoc.WriteEndElement() '</feed>
26. Next
27. xmlTempDoc.WriteEndElement() '</documents>
28. xmlTempDoc.WriteEndDocument()

Code Excerpt 3: Function to Produce List of Current Feeds

 158

Craig Wootton, University of Ulster

Line 2 in the above code creates a collection of files in the feeds directory, each of

which will be accessed during the loop specified between lines 3 and 26. The body of

the loop writes the path of the filename to the feeds.xml document (lines 6-8), and then

enters a conditional branch based on whether the current file represents a RSS feed or

an API feed (line 9). If the current file is an API, it simple uses the file information to

write the „title‟ attribute of the feed to feeds.xml. However if it is an RSS feed, the title

must be retrieved from the source URL. To achieve this, the source of the RSS feed,

held in current file of the loop, is loaded as an XML file into the system, and XPATH is

used to access the „rss/channel/title‟ path (line 15), which is then placed into feeds.xml.

The XPATH function „translate ()‟ is used here to remove any illegal characters with

respect to XML grammars and prompts.

To produce the document space, documents.xml, the Content Spotter is required to

iterate through each of the RSS documents located at the source URLs held in feed.xml,

and then paste in the title, the description, and the source elements for each <item>

element. This is done in similar method to extracting the <title> from the RSS feed

above, however Code Excerpt 4 shows an additional piece of processing required when

inserting the <description> elements.

As it is the content of the <description> elements in the RSS channel that will

eventually become the content of the VoiceXML prompt, text and coding not suitable

for dialogue is required to be removed. It is common that <description> elements

contain some HTML or other mark-up to aid the graphical rendering of the RSS feed,

all of which would be un-needed auxiliary information when used in dialogue. The

process to remove the mark-up is based on the usage of „<‟ and „>‟ to denote the start

and end of marked up text. Firstly, the content of the description element is extracted

 159

Craig Wootton, University of Ulster

and stored in a local variable, shown in line 2. Next, the Content Manager checks the

description for the presence of any marked up text. If not, the description can be written

straight to the document space, otherwise the description is then split into an array of

words (line 5). A loop then iterates through each word, and if it contains no mark up, it

is output to the document space. If the presence of a starting character „<‟ is detected,

then no words are output until the presence of the ending character „>‟ is detected. The

result of the above function is a document list, with each document containing a title

and short description of a story, the title of the RSS that the story came from, and also

the source of the web page that contains the full story.

To fetch the main story from a website is a two part process: the first part downloads

all the HTML from the source URL, given by the <source> element in the document

space; and then the source HTML is „tidied‟ to conform to W3C standards, with all text

1. xmlTempDoc.WriteStartElement("description")
2. s = node.Evaluate("string(normalize

space(string(translate(.,'£$*%^&*()!@:;=

_#~`¬¦€|\/',''))))").ToString.ToLower

3. If s.Contains("<") Or s.Contains("<") Or s.Contains(">") Then
4. html = False
5. For Each word As String In s.Split(" ")

6. If word.Contains("<") Or s.Contains("<") Then
7. html = True

8. End If
9. If html = False And Not word.Contains("src=") Or Not

word.Contains("width=") Or Not word.Contains("height=") Then

10. xmlTempDoc.WriteString(word..ToString + " ")

11. End If

12. If word.Contains(">") Or s.Contains(">") Then
13. html = False

14. End If

15. Next

16. Else : xmlTempDoc.WriteString(s..ToString)
17. End If
18. xmlTempDoc.WriteEndElement() '</description>

Code Excerpt 4: Function to Produce Document Space

 160

Craig Wootton, University of Ulster

bodies enclosed in HTML <p> tags. Code Excerpt 5 shows this process implemented in

VoiceBrowse. Lines 2 – 4 show the ASP.NET for downloading HTML as a String

Object from the source URL. This is then placed into a temporary HTML file, which

will be used as an input parameter during the execution of the HTMLTidy program. As

discussed in Section 5.1, HTMLTidy is a freely available program that transposes

illegal HTML code to W3C compliant HTML. This will enable standard parsing of the

downloaded content, as used in Code Excerpt 22.

Lines 5 and 6 show the ASP.NET required to run the HTMLTidy executable, and line 8

shows VoiceBrowse starting the process in the background. The While loop that

follows then holds the thread of execution until the background process has completed,

and then finally returns the name of the created file back to the body of code that had

called this function (line11). The newly created file contains the tidied HTML code

from the downloaded web page, and can then be used by VoiceBrowse later in the

interaction to extract the main body of content for output to the user.

1. Dim filename As String = Date.Now.Ticks.ToString + ".xhtml"
2. aRequestedHTML = objWebClient.DownloadData(url)
3. strRequestedHTML = objUTF8.GetString(aRequestedHTML)
4. FileIO.FileSystem.WriteAllText("C:\extractedHtml\webPage.ht

ml",strRequestedHTML, False)

5. myProcess.StartInfo.FileName = "c:\extractedHTML\tidy.exe"
6. myProcess.StartInfo.Arguments = "-config

c:\extractedHTML\htmlTidyConfig.txt -o c:\extractedHTML\" +

filename + " c:\extractedHTML\webPage.html"

7. myProcess.StartInfo.WindowStyle =
System.Diagnostics.ProcessWindowStyle.Hidden

8. myProcess.Start
9. While IO.File.OpenRead("C:\extractedHTML\" + filename).CanRead

= False

10. End While
11. Return filename

Code Excerpt 5: Function to Fetch Body of Content From Source URL

 161

Craig Wootton, University of Ulster

7.5 VoiceBrowse Implementation: Dialogue Manager

The main task of the dialogue manager is the recognition of a spoken utterance from the

user during interaction with the open version of VoiceBrowse. The decision making

process of how to achieve this in the VoiceXML setup of VoiceBrowse is discussed in

Section 7.9, however it was decided that the Microsoft Speech Recogniser would be

used to translate the user‟s speech to text. This was a three step process:

1. Use a VoiceXML <record> element to allow the user free speech with the

system.

2. Submit the <record> audio to a PHP script which will save the audio to a .wav

file - shown in Code Excerpt 6.

3. Finally, use VisualBasic.NET to translate the .wav file to text using the

Microsoft Speech Recogniser.

The PHP script firstly checks that the data has been received ok (line 1), and then saves

the audio data to a local file, Recognise.wav (line2). A local variable is set to either 1 or

0 depending upon the success of the save operation. With the user‟s speech now saved

to a local .wav file, control can be handled back to the next VoiceXML state, which will

1. if (isset($_FILES['query']))
2. { if

(move_uploaded_file($_FILES['query']['tmp_name'],”App_Code/temp/to

Recognise.wav")) {

3. $code = 1;
4. } else {
5. $code = 0;}
6. } else {
7. $code = 0;

8. }

9. ?>

Code Excerpt 6: PHP To Save <record> Audio Data

 162

Craig Wootton, University of Ulster

use a Dialogue Manager function to recognise the audio data from the .wav file into

plan text. This recognition() function is shown as Code Excerpt 7.

The function „recognise()‟, shown here, works in a similar fashion to fetch the main

content from a story‟s website, by starting a system process to run an executable file

(line 2 and 5). It is the executable file that contains the needed VisualBasic.Net code to

recognise the audio .wav file data into text, shown in Code Excerpt 8.

1. Function recognise(ByVal num As Integer) As Integer
2. myProcess.StartInfo.FileName =

"c:\extractedHTML\VoiceBrowseConsoleTaskDictation.exe"

3. myProcess.StartInfo.WindowStyle =
System.Diagnostics.ProcessWindowStyle.Hidden

4. Try
5. myProcess.Start()
6. myProcess.WaitForExit()

7. Return 1

8. Catch ex As Exception

9. Return 0

10. End Try
11. Return 1

Code Excerpt 7: Function to Start Speech Recognition Process

1. For Each document As System.Xml.XPath.XPathNavigator In xmlIT
2. For Each word As String In document.Value.ToString.Split(" ")

3. If word.Contains("A") Or word.Contains("B") Or
word.Contains("C") Or word.Contains("D") ... Or

word.Contains("Z") Then

4. documentGrammar.Append(word.Trim.ToString, 0, 1)
5. End If

6. Next
7. Next
8. Dim grammar As New Speech.Recognition.Grammar(documentGrammar)
9. grammar.Enabled = True
10. reco.LoadGrammar(grammar)
11. reco.LoadGrammar(New Speech.Recognition.DictationGrammar())
12. reco.SetInputToWaveFile("App_Code\temp\toRecognise.wav")
13. Dim result As Recognition.RecognitionResult = reco.Recognize
14. IO.File.WriteAllText("App_Code\temp\recognised.txt", result)

Code Excerpt 8: Visual Basic.Net Speech Recognition Function

 163

Craig Wootton, University of Ulster

To perform the recognition function on the .Wav file, it is first necessary to activate the

grammars for the recognition engine. As discussed in the next section, two different

grammars are required to be activated in order to perform the recognition, a dictation

grammar, available with the recogniser, and a document grammar containing the out of

vocabulary words, not in the dictation engine. The two loops shown here (lines 1 – 7)

iterate through each document in the document space, and then through each word in

the document, and if an out of vocabulary word is detected, this is added to the

document grammar (line 4). As discussed in the following section, there is currently no

mechanism in the current implementation of the System.Speech namespace to detect

those words not in the dictation grammar, and so this is currently done on the

assumption that the dictation grammar is a comprehensive grammar of the English

language, and it is the proper nouns in the document space, denoted by use of a

capitalised first letter, that need to be added to the document grammar.

After the completion of the loops, the document grammar, along with the dictation

grammar, are activated and loaded into the recognition engine (line 10 and 11), the .wav

file containing the saved audio data from the user is set as the recogniser‟s input, and

the recognition process begins (lines 12 and 13). The final line of code, line 14, saves

the recognised text to a local text file, recognised.txt. Control of the interaction will

then return to the VoiceXML state that called the recognition function, which will

confirm the recognised text with the user, discussed later in the Chapter.

Another important function of the Dialogue Manager is to provide dialogue history

controls to VoiceBrowse, specifically to record the path of the dialogue through the

interaction, and to retrieve the previous states of the interaction from memory. From

 164

Craig Wootton, University of Ulster

the Call Flow Diagrams above, it is this „back‟ function that provides essential

navigation through the document space, the operation of which can be compared to the

back button or functionality of a graphical web browser. With each ASP.NET script

being accessed from the Web Server by means of a HTTP request, the address of the

current and previous scripts can be stored in memory. The back mechanism can then

be implemented by retrieving the address of the previous script accessed by the Web

Browser. To assist with this functionality, the Dialogue Manager makes use of the

database server available in the environment, Microsoft SQL Server Express 2005, and

Code Excerpt 9 shows the code required to store the current and previous URLs of the

scripts into the database.This function will be executed each time a script is accessed,

and line 1 also stores the time that the current script has been accessed. For operation of

the back function therefore, the Dialogue Manager should retrieve the value held in the

„previousURL‟ field of the last record to be added to the database, got by decrease

sorting on the „time‟ field. Code Excerpt 10 shows the specification of the back

functionality in ASP.NET:

1. dataHistory.SelectCommand = "SELECT previousURL FROM tblHistory
WHERE currentURL = '" + url + "' ORDER BY time DESC"

2. dvHistory = dataHistory.Select(selArg)
3. Return dvHistory.Item(0).Item(0).ToString

Code Excerpt 10: Function to Get Previous Dialogue State From History

1. dataHistory.InsertCommand = "insert into tblHistory(previousURL,
currentURL, time) Values(@previousURL, @currentURL, @time)"

2. dataHistory.InsertParameters.Add("currentURL", currentUrl)
3. dataHistory.InsertParameters.Add("previousURL", previousURL)
4. dataHistory.InsertParameters.Add("time", TypeCode.DateTime,

Date.Now)

5. dataHistory.Insert()

Code Excerpt 9: Function to Add new Dialogue History Record to Database

 165

Craig Wootton, University of Ulster

7.6 VoiceBrowse Implementation: Information Based Dialogues

The pseudo code shown in Table 7.2 overleaf defines the various scripts that were

required to be implemented from the Call Flow and Prompt Design Diagrams with

respect to information based dialogues.

 Code Excerpt 11 shows the main ASP.NET statement that was used during the

implementation, the output statement. Normally used for outputting text to a graphical

system, the „Write‟ method of the „Response‟ object was used in this case for outputting

VoiceXML statements to the Prophecy Server.

The next increment of development was the implementation of the call flow diagram

itself – starting with the root document of the system. Root.aspx, as defined in the

pseudo code above, contains the global commands and specification for handling the

„main menu‟ and „back‟ functionality of VoiceBrowse. In addition, the error handling

routines for <nomatch> and <noinput> events are defined in root.aspx to globally

handle any cases of the user utterances not conforming to the active grammar or not

being heard by the system respectively. More specific error routines are defined in

further documents when needed. Standard VoiceXML <link>, <nomatch> and

<noinput> elements are used here to handle the main menu and error specifications, and

the role of the back command is catered for by using an additional <link> command that

directs to an ASP page containing the function from Code Excerpt 10.

1. Response.Write(“VoiceXML text to go here”)

Code Excerpt 11: ASP.Net Response Statement

 166

Craig Wootton, University of Ulster

Filename Pseudo Code

root.aspx Create the VoiceXML required to return the user to

informationStart.aspx if „main menu‟ or „start over‟ is spoken

by the user.

Create the VoiceXML required to return the user to the

previous state in the dialogue if „back‟ is spoken by the user.

This must be in the root document as it is to be available at all

stages throughout the dialogue.

Define error handlers for noinput and nomatch events.

Start the recording event to record the dialogue to .wav file

Play welcome prompt, and pass to informationStart.aspx.

informationStart.aspx Read in the titles of each feed available to VoiceBrowse.

Use these titles to define an XML grammar of available items

Create a VoiceXML form to collect the user‟s choice of feed

using the above XML based grammar. Create a sub-dialogue

to handle a „help‟ request from the user. At the end of this

sub-dialogue, control will pass back to the above form to

collect the user‟s choice of feed.

At the end of this interaction, pass control on to

disambiguate.aspx, along with the user‟s utterance.

Alternatively, if the open version of VoiceBrowse is in use,

then accept the user‟s input via a VoiceXML <record>

element to allow for the free form input of a user‟s query.

Then pass the audio data to saveRecord.php to create a local

.wav file.

 167

Craig Wootton, University of Ulster

disambiguate.aspx Receive the input from the previous file, and fetch the feeds

with matching words in the title.

If numbers of matching feeds = 1, then the user has requested

a unique feed, so proceed to listContentItems.aspx, passing

the title of the unique feed to this file. If the unique feed is an

API, pass to apiCollectRequest.aspx.

If number of matching feeds = 0, then no feeds have been

found with the user‟s request, and so pass control back to

informationStart.aspx.

If the number of matching feeds > 1, then it is not possible to

determine the requested feed from the current utterance.

Create a XML grammar from the matching titles, and generate

a VoiceXML form to iterate through the possible feeds. Once

identified, pass the feed title and proceed to

listContentItems.aspx.

listFeeds.aspx Available during the informationStart.aspx phase when the

closed version is in use, output the feed titles currently in the

VoiceBrowse environment 5 at a time to the user with an

associated title number. Use a loop counter to go from its

value + 3. The loop counter will be incremented if the user

wishes to navigate forward in the list.

A XML grammar file will allow the user to repeat the three

titles, go back in the list of titles, move on to the next three

results or say done to go back to informationStart.aspx.

Table 7.2: VoiceBrowse Pseudo Code For Information Based Dialogues

 168

Craig Wootton, University of Ulster

One noteworthy element used in the root.aspx document is the Voxeo proprietary

extension to the VoiceXML language <voxeo:recordcall>, which, when used, creates a

.wav file of the interaction with the Voxeo Prophecy Server. The element is used in

root.aspx as shown in Code Excerpt 12, and the specification of the element‟s attributes

is included as Table 7.3

Attribute Name Description

value „Value‟ specifies which percentage of calls to the Voxeo Prophecy

Server is recorded as .wav files. If the value of this attribute is 100,

then all calls will be recorded.

info The value of „Info‟ attribute is amended to the filename of the

created .wav file for identification purposes.

Table 7.3: Voxeo RecordCall Attribute Specification

The implementation of the record call element in VoiceBrowse therefore records all

calls placed to the Voxeo Prophecy server, which can then be used during the evaluation

and analysis phase of the project.

The root document of a VoiceXML system is primarily used to create and initialise

global variables, and create the global menu controls and commands, and hence the

control is passed straight to informationStart.aspx, the purpose of which is to retrieve

the user‟s intentions with regard to their desired information source and type. As

Code Excerpt 12: Voxeo Proprietary RecordCall Element

Response.Write("<voxeo:recordcall value='100' info='voiceBrowse'/>")

 169

Craig Wootton, University of Ulster

discussed previously, this is implemented as two different dialogue strategies, a „closed‟

approach and an „open‟ approach, shown respectively in Code Excerpts 13 and 17.

The closed approach, in terms of VoiceXML specification, requires more effort at this

early stage as a relevant grammar is required to be constructed to allow the user‟s input

to be recognised. At this stage of the dialogue, the grammar is to contain the titles of

the RSS and API feeds currently in the VoiceBrowse environment, extracted from the

feeds.xml file.

Lines 1 – 6 in Code Excerpt 13 show this process – while there are <feed> elements in

feeds.xml (line 1) split the feeds title into separate words (line 2), and place each word

1 While xmlFeedIt.MoveNext

2 For Each word As String In xmlFeedIt.Current.Value.Split(" ")

3 If Not grammar.Contains(word) Then

4 grammar = grammar + "<item repeat='0-1'>" + word + "

</item>"

5 End If

6 Next

7 End While

8 Response.Write("<form id='main'>")

9 Response.Write("<field name='category'>")

10 Response.Write(“<grammar version='1.0' root='choice’"))
11 Response.Write("<rule id='choice'>")
12 Response.Write(grammar)
13 Response.Write("</rule>")
14 Response.Write("</grammar>")
15 Response.Write("<prompt>Say help for assistance. Please say the

provider and also the category if you wish, or if you want to

know what is available, say list!</prompt>")

16 Response.Write("<filled>")
17 Response.Write("<if cond=""category=='list'"">")
18 Response.Write("<var name='position' expr='1'/>")
19 Response.Write("<submit next='listFeeds.aspx'

namelist='position'/>")

20 Response.Write("<elseif cond=""category=='help'""/>")
21 Response.Write("<goto next='#help'/>")
22 Response.Write("<else/>")
23 Response.Write("<submit next='disambiguate.aspx'

namelist='category'/>")

24 Response.Write("</if>")
25 Response.Write("</filled>")
26 Response.Write("</form>")

Code Excerpt 13: informationStart.aspx In Closed Version

 170

Craig Wootton, University of Ulster

into a <item> element if the grammar does not already contain the current word (lines 3

and 4).

The body of informationStart.aspx is then a VoiceXML <form> construct, in one field

of which the constructed grammar is active. A conditional statement is specified in the

<filled> specification of the field to catch utterances containing the word „list‟ which

are passed to the listFeeds.aspx document. Not discussed here, but included on the

attached Code CD, list.aspx makes up part of the help functionality of VoiceBrowse

which iterates through the currently installed RSS and API Feeds in the VoiceBrowse

environment – essentially the content from the While Loop discussed above is placed

into a VoiceXML prompt.

The rationale for splitting the titles into separate words, each of which become an

allowable grammar item is twofold: to not make the feed selection restrictive but to

match as many feeds as possible to the current input; and because users will not

commonly know the exact arrangement of words in an RSS <title> element. For

example, consider the RSS feed from the BBC for the Northern Ireland News

Headlines. If a user wished to request this feed from VoiceBrowse, and grammar

creation was not done by word division, the user would be required to say the exact

phrase “BBC News Northern Ireland Edition”, which is the title of the RSS feed, which

in turn becomes the grammar of informationStart.aspx. However, by breaking the

<title> elements into separate words, each of which become part of the active grammar,

the user could simply state “News”, or “Northern Ireland”.

The uttered terms are then passed to and used by disambiguate.aspx to select any

matching feeds, such as “BBC News Northern Ireland Edition” or “RTE Northern

Ireland News” if the words “News” was uttered (Code Excerpt 14). The output of this

 171

Craig Wootton, University of Ulster

function is to then present the user with the available options of matching feeds, of

which the user can select one to continue. Not only does this allow greater flexibility

when inputting a category of content, it further refines a user‟s query so that content

returned is not too generic i.e., „News‟ could refer to „News‟ or „Sports News‟ and so

disambiguate.aspx will prevent this.

Not shown in Code Excerpt 14 is the grammar construction, which is once again

constructed from the feed titles in feeds.xml to allow further input by the user at this

stage. Execution begins by retrieving the value of the user‟s utterance from

informationStart.aspx by accessing the querystring variable „category‟ (line 1), which is

the value that must be compared to the feed titles. Lines 2 – 4 perform a vital function

1. category = Request.QueryString.Item("category").ToString
2. If Not Request.QueryString.Item("oldCategory") Is Nothing Then

3. category = category + " " +
Request.QueryString.Item("oldCategory").Trim.ToString

4. End If
5. xmlFeedIt = xmlNav.Select("feeds/feed/title")
6. While xmlFeedIt.MoveNext

7. contains = True

8. For Each word As String In category.Split(" ")

9. If Not xmlFeedIt.Current.Value.Contains(word) Then

10. contains = False

11. Exit For

12. End If
13. Next
14. If contains Then

15. count = count + 1
16. If count = 1 Then

17. type =

xmlFeedIt.Current.SelectSingleNode("type").Value

18. End If
19. For Each word As String In

xmlFeedIt.Current.Value.ToString.Split(" ")

20. If Not uniqueTitle.Contains(word) Then

21. uniqueTitle = uniqueTitle + word + " "

22. End If

23. Next
24. End If

25. End While
26. uniqueTitle = uniqueTitle.Trim

Code Excerpt 14: Function to Match User Utterance To Available Feeds

 172

Craig Wootton, University of Ulster

in this disambiguation stage of adding the new phrase, uttered by the user, to the old

phrase previously given. This is done as although the current state is

disambiguate.aspx, and the user responds with an applicable option put forward by

VoiceBrowse, control is once again passed back to disambiguate.aspx. This will allow

VoiceBrowse to confirm that the query is specific enough to continue, and if not, then a

new set of options is to be presented to the user. Consider the response to an initial

query „News‟ for example, to which VoiceBrowse asks the user to clarify between

„World‟ and „Sports‟ news. If the user‟s response is “Sports”, the query at this stage

could still refer to any number of content types, such as „Football News‟ or „Rugby

News‟. By passing control back to disambiguate.aspx, VoiceBrowse can continue to

refine the query with input from the user, until it is specific enough to proceed to the

next state.

Due to current limitations of the XPATH specification (see Section 7.5), matching feed

titles from the document space must be identified using a loop to iterate through each

one and compare each word in the title to each word in the query separately. Line 5

shows the .NET to retrieve the list of feed titles from the documents.xml file, and so it is

the While loop in lines 6 to 25 that performs the main functionality of

disambiguate.aspx.

The condition of the While loop (line 6) ensures that the iteration continues while there

are feed titles to compare. The first stage of the While loop is to iterate through each

word in the query (line 8), and compare each word in the query to the content of the

feed title (line 9). Once the For loop has completed all iterations, a Boolean variable

„contains‟ true or false to indicate if the current feed title contains any words from the

query.

 173

Craig Wootton, University of Ulster

Based on this condition (line 14), if the current feed does contain a word from the

query, a count variable is incremented by 1 (line 15) that records the number of feed

titles that have matching words. If the current feed does not have any matching words,

then execution continues with the While loop, which progresses on to the next feed title.

If the current feed is the first feed to be found containing matching words from the

query (line 16), then a local variable „type‟ is created to record if the current feed is of

type RSS or API. This value is used later in disambiguate.aspx if only one matching

feed has been found, and dialogue can then proceed to the next state.

The last part of the While loop adds the content from current feed title to a variable

„uniqueTitle‟, which was used to create the input grammar and output prompt of the

interaction. To ensure that there is no duplication of words in the variable uniqueTitle,

the feed title is split up into separate words (line 19), and if the variable does not already

contain that particular word (line 20) then the word is added to the variable. The result

is therefore a variable which contains unique words from the matching feed titles, for

example „World‟ and „Football‟ in response to the input „News‟.

Once the matching feeds have been identified, they must be output to the user, and a

grammar constructed of the matching feeds to allow the user to utter the required feed

name. The execution of these steps is shown in Code Excerpt 15, and begins with the

grammar construction in lines 1 – 3. The feed titles held in the variable uniqueTitle are

split into separate words, and a For loop used to insert each word into an <item>

element. A <prompt> is then constructed for output (line 11), with each word of the

uniqueTitle variable used, separated by a space, as its content (lines 12 – 14). The

effect is an output statement that presents the matched feed titles to the user, and asks

for a specific one to continue. An example output might be “You have requested News.

 174

Craig Wootton, University of Ulster

I have found 2 different feeds. Options include BBC Sport News, BBC World News,

Sky News. Which would you like?”

Once input is detected from the user, control is passed back to disambiguate.aspx to

ensure that the user‟s query now identifies a unique feed with which to continue the

dialogue. If so, recall that the result of feed title matching algorithm will produce a

variable „count‟ with a value of 1, indicating that only one feed has been identified that

matches the user‟s input. If so execution takes one of two possible branches based on

the type of the unique feed type being either of type RSS or API. A „count‟ value of 0

indicates that VoiceBrowse has failed to identify any feeds matching the query.

Code Excerpt 16 shows the execution of this branching in disambiguate.aspx. Lines 1

to 3 contain the condition to catch any Scenario where no matching feed title has been

found, and so a relevant error message is output to the user, and then control is passed

back to the informationStart.aspx state.

1. For Each word As String In uniqueTitle.Split(" ")
2. grammar = grammar + "<item repeat='0-1'>" + word + " </item>"
3. Next
4. Response.Write("<var name='oldCategory' expr=""'" + category.Trim

+ "'""/>")

5. Response.Write("<field name='category'>")
6. Response.Write(“<grammar version='1.0' root='choice’")
7. Response.Write("<rule id='choice'>")
8. Response.Write(grammar)
9. Response.Write("</rule>")
10. Response.Write("</grammar>")

11. Response.Write("<prompt>You have requested " + category +

". I have found " + count.ToString + " different feeds. Options

include: ")

12. For Each word As String In uniqueTitle.Split(" ")

13. Response.Write(word + ", ")

14. Next

15. Response.Write(". Which would you like?</prompt>")

Code Excerpt 15: Outputting Matched Feeds to User and Waiting For Input

 175

Craig Wootton, University of Ulster

Line 5 checks if the matching feed is of type RSS – if so, the required query string

variables for listContentItems.aspx are created, a confirmatory message is output to the

user containing the feed found by VoiceBrowse, and control is passed on to

listContentItems.aspx. If the proposed feed was of type API, the query string

parameters are created that are required by APICollectRequest.aspx, and control is

passed to this state (see Section 7.8).

As discussed previously, the open approach of the system, shown in Code Excerpt 17,

utilises a VoiceXML <record> element (Lines 1- 8) to allow free form speech input by

the user, which is then passed to a PHP script which saves the audio data as a .wav file

(refer to Code Excerpt 6). Line 10 shows this HTTP submission of the audio data to the

PHP script, which in turn, after the creation of the .wav file, passes control back to

recogniseDictation.aspx (Code Excerpt 18).

1. If count = 0 Then

2. Response.Write("<block>I haven't found any options matching your

query”)

3. Response.Write("<submit next='informationStart.aspx' /></block>")

4. Else

5. If type = "rss" Then

6. Response.Write("<var name='position' expr='1'/>")

7. Response.Write("<var name='category' expr=""'" +

uniqueTitle.Trim + "'""/>")

8. Response.Write("<block>OK, I have found " + uniqueTitle.Trim

+ ". There are")

9. Response.Write("<submit next='listContentItems.aspx'

namelist='category position'/></block>")

10. Else
11. Response.Write("<var name='position' expr='1'/>")
12. Response.Write("<var name='count' expr='1'/>")
13. Response.Write("<var name='provider' expr=""'" +

uniqueTitle.Trim + "'""/>")

14. Response.Write("<block>OK, I have found " + uniqueTitle.Trim
+ ".")

15. Response.Write("<submit
next='http://localhost/vbClosed/apiCollectRequestVXML.aspx'

namelist='provider position count'/></block>")

16. End If
17. End If

Code Excerpt 16: Transitions to Informative or Task Based Dialogues

 176

Craig Wootton, University of Ulster

recogniseDictation.aspx makes use of the recognise() function in the Content Manager

(Code Excerpt 8) to perform the recognition process on the saved .wav file (line 1). If

the recognition has been successful (line 4), control is passed to the same point in the

interaction as the Closed Approach, listContentItems.aspx.

7.7 VoiceBrowse Implementation: Delivery of Online Content

Table 7.4 presents the pseudo code for the relevant scripts needed to output the matched

documents and content extracted from online sources:

1. Dim run As Integer = contentManager.recognise()
2. Response.Write("<form id='main'>")
3. Response.Write("<block>")
4. If run = 1 Then

5. Response.Write("<prompt>Ok. One second!</prompt>")
6. Response.Write("<var name='position' expr='1'/>")
7. Response.Write("<var name='filename' expr='0'/>")
8. Response.Write("<submit next=listContentItems.aspx'

namelist='position filename />")

9. Else
10. Response.Write("<prompt>I'm sorry, I did not understand, I'll

try again</prompt>")

11. Response.Write("<var name='count' expr='" +

Request.QueryString.Item("count").ToString + "' />")

12. Response.Write("<submit next='informationStart.aspx' />")

13. End If

Code Excerpt 18: Speech Recognition On Saved .Wav File

1 Response.Write("<record name='query' beep='true' maxtime='10s'

finalsilence='3000ms'>")

2 Response.Write("<prompt>")

3 Response.Write("What is your query?")

4 Response.Write("</prompt>")

5 Response.Write("<noinput>")

6 Response.Write("Sorry, I did not hear anything. <reprompt/>")

7 Response.Write("</noinput>")

8 Response.Write("</record>")

9 Response.Write("<filled>")

10 Response.Write("<submit method='post' enctype='multipart/form-
data' namelist='query’

next='http://localhost:9990/saveRecord.php'/>")

11 Response.Write("</filled>")

Code Excerpt 17: informationStart.aspx In Open Version

 177

Craig Wootton, University of Ulster

Filename Pseudo Code

listContentItems.aspx Receive input from disambiguate.aspx, and depending on

which dialogue strategy is use: either match the input to the

titles of all the documents in the document space; or use a

COSIM similarity function to match input to similar

<description> elements. The output in either case represents a

list of introductions that will be output to the user.

Create a VoiceXML form that outputs the matched documents

from the document list, three at a time with an associated story

number. Use a loop counter to go from its value + 3. The

loop counter will be incremented below, if the user wishes to

navigate forward in the document space.

A XML grammar file will allow the user to request further

information about a particular story‟s introduction by use of

its number, repeat the three introductions, go back in the list,

or move on to the next three introductions.

If the user requests more information, pass control to

fetchStory.aspx, along with the number of the story being

requested, and the title of the feed currently in use to identify

the relevant source of the story in the document space.

If the user requests to go forward through the list of matching

documents, then pass control back to listContentItems.aspx

with an incremented count variable for use in the output loop

and grammar creation.

fetchStory.aspx Receive the title of the current feed and the story number

request by the user from the previous file. Use the story

number to identify the relevant story in the document space,

and retrieve its source URL.

Access the source URL, and download the HTML. Use

HtmlTidy to clean and parse the downloaded HTML, and

 178

Craig Wootton, University of Ulster

extract the text paragraphs.

Use a loop counter to go from its value + 3, outputting 3

paragraphs of text from the main body of content. The loop

counter will be incremented below, if the user wishes to

navigate forward throughout the story‟s body.

A XML grammar file will allow the user to repeat the three

paragraphs, go back in the story‟s body, or move on to the

next three paragraphs.

If the user requests to go forward through story‟s body, then

pass control back to fetchStory.aspx with an incremented

count variable for use in the output loop and grammar

creation.

Table 7.4: VoiceBrowse Pseudo Code For Outputting Content

The execution of listContentItems.aspx is dependent on the dialogue strategy in use: if

the closed approach is in use the <document> elements in the document space are

identified according to their <title> matching any part of the user‟s utterance; or

identified by performing a Cosine Similarity function on the <description> elements of

the document space with the user‟s speech if the open approach is in use. The former is

similar to disambiguate.aspx which matches the content of the <title> elements to the

user‟s input. The call to the Cosine Similarity function in listContentItems.aspx is

shown as Code Excerpt 19.

The execution begins by reading into memory the recognised text from the recognition

function, the result of which was stored as a local text file (line 1). Starting with the

inner most part of the nested brackets in line 4, the recognised words are first converted

to lowercase, as is the document space, trailing and leading edge spaces are trimmed

from the text, and this is then passed to a function to remove the stop words from the

text. Not shown here, removeStopWords() is a rule based function that contains a list of

 179

Craig Wootton, University of Ulster

well used stop words, of which the recognised text is filtered through and removed. The

result is then passed into getSimilarDocuments() which performs the Cosine Similarity

function - the code for which is included on the attached Code CD.

Independent of the dialogue strategy in use, the execution is essentially similar after

matching documents have been fetched, by returning the result set to the user, and

allowing the user to navigate through the result list and to select a particular story for

VoiceBrowse to retrieve (Code Excerpt 20).

1. Dim oFile As New

System.IO.FileStream(System.Configuration.ConfigurationManager

.AppSettings("temp") + "recognised.txt", IO.FileMode.Open)

2. Dim oRead As New System.IO.StreamReader(oFile)

3. Dim query As String = oRead.ReadToEnd

4. filename =

f.getSimilarDocuments(f.removeStopWords(query.ToLower.ToString

).Trim.ToString)

Code Excerpt 19: Cosine Similarity Function of Content Spotter

1. For i = 1 To Request.QueryString.Item("position") - 1
2. xmlFeedIt.MoveNext()

3. Next
4. Response.Write("<prompt>I have found stories. I will read them

3 at a time. Say the story number to proceed, or say repeat,

next or back.")

5. i = 1
6. While xmlFeedIt.MoveNext

7. If i > 3 Then

8. Exit While

9. Else

10. Response.Write("story " + (i +
Request.QueryString.Item("position") - 1).ToString + ":

")

11. Response.Write(xmlFeedIt.Current.Value.ToString)
12. i = i + 1

13. End If

14. End While
15. Response.Write("</prompt>")

Code Excerpt 20: Outputting Matched Documents To The user

 180

Craig Wootton, University of Ulster

The current „position‟ in the result set of returned documents is key to enabling the user

to navigate through the documents. A variable „position‟ is initialised to 1, and

incremented by the number of documents to be returned to the user, currently three

documents at a time. So, the first time listContentItems.aspx is accessed, the documents

from position 1 to 3 will be output to the user, then if the user requests the next three

documents, documents 4 to 6 will be output, and so on. It is important to understand

that listContentItems.aspx is reloaded by the VoiceXML every time the user requests

the next three documents, and so to control the current value of the position element, it

is submitted as a „namelist‟ attribute, part of the <submit> specification, to

listContentItems.aspx, the value of which is then accessed in line 1 by requesting its

parameter value. This is used by a For loop to move the XML pointer to the required

position in the list of matched documents (lines 2 and 3).

Line 4 specifies the <prompt> element that outputs to the user the matched documents.

It is the While loop, from lines 6 – 14, which outputs the current document description

to the user and advances to the next, if less than three documents have been outputted to

the user (lines 7 – 9), and if there are still documents in the returned list to output. Line

10 therefore outputs the text “Story N” to the user, where N is the story number,

calculated by adding the values of the counter variable i that will contain a value 1 -3, to

the value of the starting position variable. For example, if after outputting the first three

stories the user responds with „next‟, then the position variable is 3. Once the document

has been reloaded, the calculation of line 10 will result in Story 4, Story 5 and Story 6

(1 + 3, 2 + 3 and 3 + 3). Finally it is line 11 that writes the content of the <description>

element out to the user. It is important to remember that the <description> element

from the document space is created from the <description> element of the RSS feeds.

 181

Craig Wootton, University of Ulster

If the user wishes to access the full story from the provider‟s web site, then

VoiceBrowse must access the web page located at the documents <source> element.

The function to fetch the body of an article‟s web page is handled by the Content

Manager (Code Excerpt 5), and the call to this function is contained within

fetchMainContent.aspx (Code Excerpt 21). The source URL of the story is retrieved

from the document space using XPATH (line 1). The values of the <source> elements

from the document collection are accessed by the XPATH

„/Documents/document/source‟. Only the <source> elements from the documents that

match the active category are retrieved, by using the XPATH String function

„contains()‟. In the open version, as an XML document has been created with a rank list

of documents, there is no need for the inclusion of this function.

Lines 2 to 4 then simply moves the XML pointer from the start of this list of <source>

elements to the correct one, by iterating to the value contained in the query string

parameter „story‟. The value of this parameter was passed to fetchMainContent.aspx by

the previous document, listContentItems.aspx, and is the value of the VoiceXML

<field> that was created in listContentItems.aspx to accept the story number from the

user. With the XML pointer now located at the correct <source> element, the

Code Excerpt 21: Fetching Content Body From URL

1. xmlFeedIt =

xmlNav.Select("/Documents/document/source[contains(../title,'" +

Request.QueryString.Item("category").ToString + "')]")

2. For i = 1 To Request.QueryString.Item("story")

3. xmlFeedIt.MoveNext()

4. Next

5. filename =

contentManager.fetchMainContent(xmlFeedIt.Current.Value.ToString)

6. filename = filename.Split(".").GetValue(0)

 182

Craig Wootton, University of Ulster

element‟s value is passed to the fetchMainContent() function, which creates a local

copy of the remote story for VoiceBrowse to use (refer to Code Excerpt 5).

Once this function has completed, VoiceBrowse must output the fetched content out to

the user. Code Excerpt 22 shows this function, and it is similar in execution to

listContentItems.aspx, in that three paragraphs of text are output at a time to the user

instead of three stories - to which the user can again respond next, back or repeat, to

navigate through the body of text.

Line 1 sets the XHTML file to be output to the resulting XHTML from the

fetchMainContent() function, passed as the variable „filename‟. XPATH is then used to

extract all the <p> elements from the XHTML file (line 2), once again using the

XPATH node function „position()‟ to set the .NET XML pointer to the relevant <p>

element in the file. The operation of this „position‟ element is similar in function to that

in listContentItems.aspx – it is incremented with each execution, and passed as a query

string variable to itself if the user requests „next‟.

1. xpathDoc = New System.Xml.XPath.XPathDocument("C:\extractedHTML\"

+ filename + ".xhtml")

2. xmlFeedIt = xmlNav.Select("//xhtml:p[position()>=" +

(Request.QueryString.Item("position") - 1).ToString + "]", nsMgr)

3. Response.Write("<form id='main'>")
4. Response.Write("<field name='story'>")
5. Response.Write("<prompt>")
6. i = 1
7. While xmlFeedIt.MoveNext

8. If i > 3 Then
9. Exit While

10. Else
11. Response.Write(xmlFeedIt.Current.Value.ToString + ". ")
12. i = i + 1

13. End If
14. End While
15. Response.Write("Please say repeat, next, back, or main

menu.</prompt>")

Code Excerpt 22: Outputting Main Content Body To User

 183

Craig Wootton, University of Ulster

The result of lines 1 and 2 is then a set of XML Nodes, each containing a paragraph of

text to be output to the user. Lines 3 to 5 simply set out the VoiceXML <form>

specification to be used for the input and output of information, and it is the While loop

from lines 7 to 14 that then outputs the paragraphs of text to the user. The condition of

the While loop in line 7 is met if there are still nodes, or paragraphs, of text to be output,

and if so, the preceding If statement (line 8) controls the conditions of outputting only

three paragraphs at a time to the user. If both conditions are satisfied, line 11 outputs

the paragraph text, accessed by the current node‟s „Value‟ attribute, to the user. The

text itself has been wrapped inside a VoiceXML <prompt> statement, which concludes

with the allowable instructions for the user, as defined during the prompt design phase

of development (section 7.3).

7.8 VoiceBrowse Implementation: Task Based Dialogues

Table 7.5 overleaf shows the pseudo code required to handle task based dialogues with

VoiceBrowse. Dialogue control is passed to apiCollectRequest.aspx from

informationStart.aspx if VoiceBrowse proposes that the current query is to be handled

by an API (Code Excerpt 23). Task based dialogues are more difficult to handle with

regard to language understanding than information based dialogues as the user‟s input

cannot be anticipated . Due to the generic nature of VoiceBrowse, the Content Manager

must allow the interaction with APIs from many different domains completing many

different tasks. The inputs therefore have to be treated just as generic – one task based

dialogue could be ordering computer parts of eBay whilst the next could be booking a

flight from Belfast to London.

 184

Craig Wootton, University of Ulster

 Filename Pseudo Code

apiCollectRequest.aspx

Receive the API chosen by the user from disambiguate.aspx.

Identify the API‟s specification, and extract the list of

parameters that must be elicited from the user.

Output the parameters one at a time, and pass control to

saveAPIvariables.php to recognize the user‟s input.

Confirm the parameter‟s value before moving on to the next.

Once all parameters have been collected from the user,

proceed to apiResponse.aspx.

apiResponse.aspx

Receive the parameters elicited from the user in

apiCollectResponse.aspx. Insert the values into the relevant

paths in the API Schema.

Submit the API Schema via HTTP request to the relevant

URL. Receive the API response, and extract the results.

Output the results three at a time with an associated result

number. Use a loop counter to go from its value + 3. The

loop counter will be incremented if the user wishes to navigate

forward in the result set.

A XML grammar file will allow the user to request a

particular result number, repeat the three results, go back in

the list of results, or move on to the next three results.

saveAPIvariables.php Receive the data from apiCollectVariables.aspx, and save it as

a .wav file. Pass control to apiCollectVariables.aspx to

recognize the user‟s speech and confirm.

Table 7.5: VoiceBrowse Pseudo Code For Task Based Dialogues

 185

Craig Wootton, University of Ulster

To cater for the input generically, the recognition method similar to that of the open

system was used – use a <record> element to allow the user to specify their answer,

which is a parameter of the API, and then use the Content Manager‟s recognise()

function to save the audio to text and proceed to the next parameter.

Firstly, the Dialogue Manager identifies the correct API in use by accessing the query

string variable „provider‟ that contains the title of the API, specified by

informationStart.aspx (line 1). Once retrieved, this is then passed into an XPATH

contains() function to identify the filename of the API specification to be used, stored as

a string variable „api‟. This filename can be used to load the API specification into

memory, needed to access the required parameters for which values must be collected

from the user. Not shown in Code Excerpt 23, but included on the attached Code CD, is

a count variable that keeps track of the current parameter being output to the user. Once

confirmed by the user that their input has been recognised correctly, the count variable

increments by 1 and moves the pointer onto the next parameter to be output.

Code Excerpt 23: Collecting API Parameter From User

1. Dim api As String =

xmlNav.Evaluate("string(feeds/feed/filename[contains(../title,'"

+ Request.QueryString.Item("provider").ToString + "')])")

2. Response.Write("<record name='query' beep='true' maxtime='5s'>")

3. Response.Write("<prompt>")

4. Response.Write("Please tell me the " +

xmlfeedIT.Current.GetAttribute("name", "").ToString)

5. Response.Write("</prompt>")

6. Response.Write("</record>")

7. Response.Write("<filled>")

8. Response.Write("<submit method='post' enctype='multipart/form-

data' namelist='query " + namelist + "'

next='http://localhost:9990/saveAPIvariables.php'/>")

9. Response.Write("</filled>")

 186

Craig Wootton, University of Ulster

Lines 2 – 7 specify the <record> element that will allow the user to input their answer to

the <prompt> (line 4). Generic wording is used to ensure the function can be used in

any task based dialogue, and the specific parameter to be provided by the user is

inserted into the prompt by using the „GetAttribute‟ method of the XML Node Class in

ASP.NET. The <filled> element specified from lines 7 – 9 then submits the audio data

to the PHP script saveAPIvariabhle.php, which saves the audio data to a wave file.

Control is then passed back to apiCollectRequest.aspx.

The next step is then to get the user‟s confirmation of the recognition process, shown in

Code Excerpt 24. Line 1 invokes the recognise function() of the Content Manager,

which translates the audio .wav file produced by the PHP script into a text file

containing the recognised words by the Microsoft recogniser. To confirm the

recognition, VoiceBrowse is required to read in the text from the file, and output this to

the user in a <prompt> element (lines 4 to 6). The main construct is a boolean <field>

1. contentManager.recognise(0)

2. Response.Write("<field name='confirm' type='boolean'>")

3. Response.Write("<prompt>Did you say:")

4. Dim oFile As New

System.IO.FileStream(System.Configuration.ConfigurationManager.Ap

pSettings("temp") + "recognised.txt", IO.FileMode.Open)

5. Dim oRead As New System.IO.StreamReader(oFile)
6. Response.Write(oRead.ReadToEnd)
7. Response.Write("</prompt>")
8. Response.Write("<filled>")
9. Response.Write("<if cond='!confirm'>")
10. Response.Write("<submit next='apiCollectRequestVXML.aspx'/>")
11. Response.Write("<else/>")
12. Response.Write("<var name='position' expr='" +

Request.QueryString.Item("position").ToString + 1) + "'/>")

13. Response.Write("<submit next='apiCollectRequestVXML.aspx'/>")
14. Response.Write("</if>")
15. Response.Write("</filled>")
16. Response.Write("</field>")

Code Excerpt 24: Confirming API Parameter Uttered By User

 187

Craig Wootton, University of Ulster

element (lines 2) that accepts variations of „yes‟ or „no‟ answers from the user. Based

on this input execution takes one of two paths: if the user does not confirm the

recognition (line 9), control is passed back to apiCollectRequest.aspx to ask for the

parameter‟s value once more; or, if the user does confirm the input, then the „position‟

variable is incremented by 1 before control is passed back also to

apiCollectRequest.aspx, which will then ask for the next parameter‟s value from the

user.

Once all the parameters from the API specification have been elicited from the user and

confirmed, control is passed to apiResponse.aspx which performs the HTTP Request

1. res = contentManager.apiRequest(paramPath, paramValue,

feedNav.SelectSingleNode("feed/api/request/schema").Value.ToString

, feedNav.SelectSingleNode("feed/api/request/url").Value.ToString)

2. apiResponse.Load(res)

3. Dim list As String =

feedNav.SelectSingleNode("feed/api/response/parameter[@name='list'

]")

4. Dim xmlIT As System.Xml.XPath.XPathNodeIterator =

responseNav.Select(list)

5. For count = 1 To Request.QueryString.Item("position") + 3 - 1

6. xmlIT.MoveNext()

7. Next

8. While xmlIT.MoveNext

9. If count > 3 Then

10. Exit While
11. Else

12. responseString = responseString + "Result " + (count +
Request.QueryString.Item("position") - 1).ToString +

xmlIT.Current.Evaluate("string(normalize-

space(string(translate(.,'£$*%^&*()!@:;<>=-

_#~`¬¦€|\/',''))))").ToString

13. xmlIT.MoveNext()
14. count = count + 1

15. End If
16. End While

17. Response.Write("There are " + xmlIT.Count.ToString + " results")

18. Response.Write(responseString)

19. Response.Write("Please say the result number, repeat, next, back,

or main menu.</prompt>")

20. Response.Write("<filled>")

21. Response.Write("<submit

next='http://localhost:9990/collectPersonalDetails.vxml'/>")

22. Response.Write("</filled>")

Code Excerpt 25: Outputting API Results To user

 188

Craig Wootton, University of Ulster

and outputs the response to the user (Code Excerpt 25). Line 1 calls the function

apiRequest, part of the Content Manager which accepts four arguments, the first two

being arrays of parameters paths and values, the third containing the API schema to be

submitted, and the fourth containing the URL to which the API request is made. The

parameters paths are fetched from the API‟s specification and the array of values uttered

by the user are inserted into the appropriate place in the schema, using the array of paths

as a direction.

Once the request has been made, the filename of the XML results file is stored in the

variable „res‟. This XML file is then loaded into VoiceBrowse (line 2), and the results

are extracted from the XML (line 4) by using the appropriate path that was specified

with the API specification (line 3). The result is then an XML Node Iterator of API

results, which can be output to the user. This is currently done three at a time,

controlled by the use of a „position‟ variable to store the current position in the list that

is incremented with each result that is output. To set the XML pointer at the right place

in the list, the For loop specified in lines 5 - 7 increments the XML pointer from the

start of the list to the required position.

It is the While loop from line 8 - 16 that iterates through the next three results in the list

and creates the String object to be output to the user. The If statement (line 9) prevents

more than three results being output, otherwise XPATH is used to evaluate the result of

normalisation() and translate() functions based on the result node‟s value, to remove

space and erroneous characters from the result (line 12). The value is added to the

„responseString‟ variable that also contains the result number for that value. The end

result of this loop is a variable containing 3 results and their results number, such as

“Result 4, British Airways, Result 5, Iberia, Result 6, easyJet” for example.

 189

Craig Wootton, University of Ulster

The output itself begins in line 17 with the total number of API results uttered to the

user, followed by the output of the „responseString‟ variable (line 18), and lastly the

instructions guiding the user to an appropriate response (line19). Not shown in Code

Excerpt 25 is a VoiceXML <if> statement in the <filled> block that allows the user to

hear the results again by using a <clear> element to delete the user‟s utterance from the

<field>, or allowing the user to proceed to the next three results, in which case control is

once again submitted to apiResponse.aspx with the incremented „position‟ variable.

Otherwise, if the user utters a result number, control is passed to the

collectPersonalDetails.vxml form to collect the user‟s details for completion of the task.

7.9 VoiceBrowse Implementation: Challenges and Issues Encountered

Throughout implementation, numerous challenges were encountered that had to be

overcome to enable VoiceBrowse maintain its generic nature. Problems arose from

different areas of the VoiceBrowse environment and the technologies used for

implementation; these can be categorised as Prophecy, VoiceXML, XPATH, Microsoft

Speech Recogniser and APIs.

Common implementations of VoiceXML are based on Web Technologies and

associated architectures, including the use of scripting languages to produce the

VoiceXML during execution. With the choice of the Voxeo Prophecy platform, this

paradigm is supported by the use of PHP, or other scripting languages with the

incorporation of an appropriate web server, for example ASP.NET in the case of

VoiceBrowse. When using web based technologies, standard techniques for passing

variable values between pages include the use of „session‟ variables – variables that

hold their value whilst the current session, or interaction, is active.

 190

Craig Wootton, University of Ulster

The design of VoiceBrowse called for communication to occur between VoiceXML

pages: passing the user‟s input from informationStart.aspx to disambiguate.aspx, for

example; or passing the position variables from page to page as the user navigated their

way through the document space. It had been planned to use session variables to

accommodate these exchanges, however Voxeo Prophecy is currently unable to support

the use of session variables in its current version. This is due to a new session being

created with each new VoiceXML file that is accessed, and so at the point where

execution has finished with one VoiceXML file and transitions to the next, all session

variables are lost as the session itself has closed. Possible use of Voxeo Prophecy could

be somewhat limited for developers needing to facilitate the use of session variables,

and other session related attributes.

To overcome this limitation, it was possible to transmit variable values as query string

variables, another common technique used in web based programming. Query string

variables can often be found in the URL or Address bar of graphical browsers,

appearing after the „?‟ character in an address string. For example in

„http://www.google.co.uk/search?q=vxml‟, the variable „q‟, short for query, contains the

value „vxml‟ – here the query string variable „q‟ contains the search query „vxml‟ which

is used by the „search‟ page of www.google.co.uk.

A similar mechanism is available with Voxeo Prophecy. However this can lead to more

complex and even confusing code; variables have to be requested from the query string

to be used, and then VoiceXML variables containing the variable‟s value created,

which are then submitted to the next document using the „namelist‟ attribute of a

<submit> element. If the number of variables to be passed as query string variables

becomes relatively large, this can become quite a convoluted solution to the problem.

 191

Craig Wootton, University of Ulster

Problems with the VoiceXML language itself were also encountered - some due to the

specification, and others due to incorporating web site information with VoiceXML.

The biggest issue with regard to the VoiceXML specification was the lack of facility to

save <record> audio data to a local sound file. A number of ad hoc solutions are

available through the use of scripting languages, but a more desired solution would have

this provision built into the VoiceXML language.

To overcome this problem in VoiceBrowse, and to recognise the words from the

<record> element, a combination of PHP and VisualBasic.Net was used. By using the

System.Speech 3.0 namespace, Visual Basic could be used to invoke the „dictation‟

grammar on the saved .wav file using Microsoft Speech Recognition Engine 5.1, and

the results then saved as a text file. Additionally, due to the nature of VoiceBrowse‟s

functionality, a rule based method was needed to add new words, in particular proper

nouns, to the dictation grammar
46

. The ability to do this however is not available in the

current implementation of the System.Speech 3.0 namespace and Microsoft Speech

Recognition Engine 5.1, and so a workaround had to be devised. This included

invoking two grammars at the same time on the saved audio file; one being the dictation

grammar, and the other being a finite state based grammar containing a list of <item>

elements, each of which contained a particular word not in the current dictation

grammar. Although this solved the original problem, it led to high word error rates, and

so there is a need for a method to produce N-Gram based language models that can be

46 http://msdn.microsoft.com/en-us/library/system.speech.recognition.dictationgrammar.aspx

 192

Craig Wootton, University of Ulster

used with the Microsoft Speech Recogniser, similar to that of other recognisers

available with appropriate language model tools
47

.

Further constraints were encountered with regard to the VoiceXML grammar

capabilities. Current specifications of the VoiceXML language limit language

understanding to finite state grammars. Using VoiceXML with statistical language

models, such as N-Gram models, is not currently incorporated into the specification,

although this can be made possible with the use of scripting languages and certain

speech recognisers (Larson 2005b). This limits the possible use of VoiceXML to

dialogue based on system initiative, reducing the potential application and deployment

of a standard language for creating dialogue systems.

Although some shortcomings of the VoiceXML language have been identified, it is

however a mature and well developed language in other areas. Its elements and

execution algorithms are well specified and documented. Normally handwritten by

developers, <grammar> and <prompt> elements are therefore created using legal

characters with regard to the VoiceXML specification. VoiceBrowse however extracts

the information from online sources for use within the <prompt> and <grammar>

elements. This led to the problem of illegal characters being used as the content for

these elements, such as „<‟ and „(„ for example. A rudimentary solution developed to

prevent this was to „filter‟ the words to be used, removing any illegal characters as

defined by the VoiceXML language.

One other language used during implementation with restrictions that had to be

overcome was the XPATH query language. XPATH was developed alongside XML

47 http://cmusphinx.sourceforge.net/html/cmusphinx.php &
https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/SimpleLM/

 193

Craig Wootton, University of Ulster

and there are numerous functions and operations available for XPATH to query an

XML document.
48

 Planned use of the contains() string function had been during the

disambiguate.aspx state, to match the user‟s input onto available feed titles. However,

this function matches exact phrases, meaning that to identify a particular feed, a user

would be required to say the words of the feed‟s title in exact order – the user query

„Northern Ireland News‟ would not be matched to „BBC News Northern Ireland‟ in the

feed list for example. Suggestions for future implementations of the XPATH language

would be to allow further refinements of string functions such as contains() with

common options available in many search functions, such as „Match EXACT phrase‟ or

„Match ANY words‟.

An anticipated problem was the inclusion of APIs in the VoiceBrowse environment to

handle the task based dialogues. Due to each API having its own specification, and

handling different content types, they cannot be treated generically, and so in this

implementation of VoiceBrowse the developer is required to specify certain parameters

when adding an API into the system. Furthermore, regarding the output of API

responses, it is clear that different content types should be handled differently, although

knowledge of this from VoiceBrowse‟s perspective is somewhat limited due to the

generic nature of the interaction. Future work in this area could see the automation of

adding APIs to the environment, coupled with better language understanding and

grammar creation abilities. However, the generic preparation of different outputs will

be evaluated from a user‟s point of view in the next chapter.

48 http://www.w3.org/TR/xpath-functions

 194

Craig Wootton, University of Ulster

7.10 VoiceBrowse Implementation: Example Dialogues

The realisation of the VoiceBrowse architecture has resulted in a dialogue system

capable of generically browsing online content. To illustrate the functionality and

dialogues that can be achieved with VoiceBrowse, Table 7.6 overleaf introduces three

sample dialogues with the system, including comments to aid understanding of the

functionality.

Utterance Utterance Comment

S1 Welcome to VoiceBrowse. To return

to this point, say main menu at

anytime.

Welcome prompt

S2 Say help for assisstance. Please say the

provider, and also the category if you

wish, or if you want to know what is

available, say list.

Initial direction prompt

U1 BBC User wishes to access

information from the BBC

website

S3 You have requested BBC. I have

found 10 different feeds. Options

include BBC News, Business,

Entertainment, Sports, Football,

Northern Ireland, Politics, Home

Page...

As a result of matching the user

input „BBC‟ to the Feed Titles,

10 possible feeds were found.

Disambiguate.aspx outputs these

to the user, and awaits a

response.

U2 Entertainment The user requests Entertainment.

The query now actually reads

BBC Entertainment.

 195

Craig Wootton, University of Ulster

S4 There are 23 stories. I will read them 3

at a time. Say the story number to

access the full story, or say repeat, next

or back.

Disambiguate.aspx now finds a

unique feed when matching

„BBC Entertainment‟ to the Feed

Titles. The controls available to

the user to navigate through the

resulting documents are iterated

to the user

S5 Story 1, talksport host james whale is

fired for telling listeners to vote for

london mayoral candidate boris

johnson. Story 2, babyshambles

frontman pete doherty is released from

prison after serving 29 days of a 14

week sentence. Story 3, hollywood

actor robert downey junior signs up for

the film sequel to iron man, which is to

be released in 2010.

The first 3 <description>

elements of the BBC

Entertainment RSS Feed are

output by listContentItems.aspx

and the system awaits a response

from the user.

U3 3 The user responds with number

„3‟, indicating that they wish

VoiceBrowse to access the full

web page related to story 3.

 196

Craig Wootton, University of Ulster

S6 Ok, you want story 3, one moment Acknowledgement from

VoiceBrowse to indicate that

they have understood the user‟s

request

At this point the Content

Manager has received a

<source> URL from the

Dialogue Manager, and

downloads and „tidies‟ the

HTML from that address. The

resulting HTML is saved as an

XML file, which the Dialogue

Manager will use to output to the

user.

S7 You can say repeat, next or back at

anytime

Standard introduction outputting

applicable navigational controls

to the user whilst the main story

is being output.

S8 Hollywood actor... (story narrated from

web site)

The Dialogue Manager outputs 3

<p> elements at a time to the

user, retrieved from the resulting

XML document from system

utterance S6

S9 Welcome to VoiceBrowse. To return

to this point, say main menu at any

time.

Welcome prompt

 197

Craig Wootton, University of Ulster

S10 What is your query? This is the open version of

VoiceBrowse. For illustration

purposes, the same task as in the

above sample dialogue will be

completed.

U4 Is Robert Downey Junior doing another

Iron Man movie?

An open ended question from the

user regarding the same story as

above. The users utterance is

captured as a VoiceXML

<record> element, which is then

stored as a .wav file by the PHP

script. The Microsoft ASR is

then used to convert the audio to

text, which is then output to and

confirmed by the user (not

shown here).

S11 I have found 4 stories. The Dialogue Manager here

removes the stop words „is‟,

„doing‟, „another‟ and leaves the

key terms of the query. The

query is passed to the Content

Manager which performs the

COSIM function. The result is a

ranked list of 4 documents, or

<description> elements.

S12 Story 1, hollywood actor robert

downey junior signs up for the film

sequel to iron man,...

The Dialogue Manager reads the

resulting <description> elements

to the user, 3 at a time, in ranked

order.

 198

Craig Wootton, University of Ulster

U5 1 The user has barged-in and has

requested more information

about the first story.

S13 You can say repeat, next or back at

anytime

See S7

S14 Hollywood actor... (story narrated from

web site)

See S8

S15 Welcome to VoiceBrowse. To return

to this point, say main menu at

anytime.

Welcome prompt

S16 Say help for assisstance. Please say the

provider, and also the category if you

wish, or if you want to know what is

available, say list.

Initital direction prompt

U6 Travel Fusion In this example, the user wishes

to complete a task based

dialogue, specifically book a

flight by accessing the „Travel

Fusion‟ website.

S17 Ok, I have found Travel Fusion. Disambiguate.aspx matches the

user‟s input against the Feed

Titles, finds only 1 unique feed,

and so can proceed.

 199

Craig Wootton, University of Ulster

S18 Please tell me the origin. The Content Manager, as a result

of finding only 1 unique feed,

has identified the feed as an API

by the inclusion of its <type>

element. Therefore, it accesses

the named parameters from the

API, in this case four parameters,

and passes this list back to the

Dialogue Manager to collect the

information from the user. The

first parameter is to collect the

origin from the user.

U7 Belfast The user‟s utterance is captured

as a VoiceXML <record>

element, which is then stored as

a .wav file by the PHP script.

The Microsoft ASR is then used

to convert the audio to text,

which is then output to and

confirmed by the user (not

shown here).

S19 Please tell me the destination. Second parameter to be collected

from the user

U8 London See U7

S20 Second parameter to be collected from

the user

Third parameter to be collected

from the user

U9 26
th

 August 2008 See U7

 200

Craig Wootton, University of Ulster

S21 Please tell me the return date Fourth parameter to be collected

from the user

U10 28
th

 August 2008 See U8

S22 Ok one second. There are 62 results With all parameters collected,

they are passed back to the

Content Manager which inserts

them into their respective place

in the API schema. This is then

submitted to the relevant <URL>

for that API. The response is

received as an XML document,

and it is passed to the Dialogue

Manager for output to the user.

S23 Result 1 British Airways. Result 2 Aer

Lingus. Result 3 EasyJet. Please say

the result number, next, repeat or back.

Using the <response> path

specified with the API, the

Dialogue Manager can extract

the relevant results from the API

response, which are output to the

user 3 at a time.

Table 7.6: Sample Dialogues With VoiceBrowse

7.11 Summary

This chapter has examined and explored in detail the implementation phase of

VoiceBrowse. The conceptual architecture, design, process and use case diagrams

presented previously were transformed into a VoiceXML Call Flow Diagram.

Available dialogue technologies and platforms were considered for each of the main

components of a spoken dialogue system, and the technologies chosen to realise

VoiceBrowse were discussed along with the rationale for their selection.

 201

Craig Wootton, University of Ulster

Incremental implementation of the system was then discussed, and a detailed account of

the various stages presented. Challenges and issues faced during implementation have

been documented, including suggestions for overcoming current shortcomings with

regard to the technologies. The next chapter describes the evaluation of the

VoiceBrowse system.

 202

Craig Wootton, University of Ulster

Chapter 8: VoiceBrowse Evaluation

With VoiceBrowse implemented and tested, the next step of the research was to

evaluate the system. As defined at the requirements stage, VoiceBrowse offers

contributions to two different aspects of dialogue research: technical advances with

regard to generic dialogue systems utilising unstructured online content in multiple

domains; and usability advances with regard to browsing the Internet through speech.

Evaluation of both these aspects was taken into consideration during the design of the

evaluation, in order to identify relations between the two. A detailed discussion of the

evaluation design follows, followed by a presentation and discussion of the results and

findings.

8.1 VoiceBrowse Evaluation: Design

The evaluation process should measure the performance and efficiency of the

implemented system against the original requirements, and both qualitative and

quantitative mechanisms were used to achieve this.

To evaluate the effect of the two different dialogue strategies on dialogue usability, it

was initially proposed to present both systems to each user, and compare and contrast

the user‟s subjective measurements given for each system. However, referring to the

definition of usability given in Section 2.8 of the thesis, it would be difficult to produce

a measure of learnability for either system. Learnability refers to the ease of learning

the system and its functionality by a user over a period of time, and as each user would

only have limited time with each system, this could not be measured accurately.

 203

Craig Wootton, University of Ulster

Therefore in a revised test design, half the participants were presented with the closed

version of VoiceBrowse, and half with the open version. To simulate an extended

period of time within which learnability could be measured, the evaluation was done in

three stages:

1. The user‟s performance with the system was measured whilst completing set

tasks without having used the system before commencement and without

explanatory sessions.

2. The user was offered some free time to interact with VoiceBrowse, and the

opportunity to ask questions regarding the system‟s functionality.

3. The user would then complete similar tasks as they faced in stage 1, and the

difference in performance was calculated to give a measurement of learnability.

Furthermore, as usability is also defined with respect to the needs of different users, the

evaluation design caters for the needs of the different users with regard to age and

computing experience. The latter is important with regard to the usability of

VoiceBrowse as it is the functionality of the graphical web browser that VoiceBrowse is

designed to replicate, and so the experience of using such an interface would be

predicted to have an effect on the usability of VoiceBrowse.

The final evaluation design is included as Appendix B of the thesis and its design is

reinforced by its use in previous dialogue evaluations. Den Os et al. (2005) used a

similar evaluation design to evaluate the usability of two different dialogue

implementations of a multimodal dialogue system for bathroom design.

The hypotheses that the evaluation was designed to test can be summarised as follows:

 204

Craig Wootton, University of Ulster

1 That open and closed dialogue strategies will have an effect on a user‟s

performance and usability with VoiceBrowse. It is thought that an open

dialogue strategy would be more suited to younger people than older people due

to the flexibility and speed offered over a closed strategy - and that a closed

dialogue strategy would be more suitable to older people than younger people

due to more guidance being offered through the dialogue to task completion.

Throughout the evaluation, the closed and open version of VoiceBrowse will be

referred to as „System 1‟ and „System 2‟ respectively.

2 That prior use of graphical interfaces will have an effect on the user‟s judgement

of usability and performance using VoiceBrowse. It is thought that those who

are experienced with regard to web browsing will find VoiceBrowse more

usable than those who are inexperienced, due to their prior knowledge of web

technologies. The two user groups tested in this hypothesis will be referred to as

„Experienced‟ and „Inexperienced‟.

3 That age will have an effect on usability and performance. It is thought that

young people will find VoiceBrowse more usable than older people, due to their

heightened appreciation of technology. The two user groups tested in this

hypothesis will be referred to as „Young‟ and „Old‟.

4 That usability is directly proportional to experience with VoiceBrowse – that is,

as users interact with VoiceBrowse over time, the usability of the system

increases. This will be referred to as learnability, and it is expected that

experienced users and younger users demonstrate a higher degree of learning

than inexperienced and older users. The two user groups tested in this

hypothesis will be referred to as „Untrained‟ and „Trained‟.

 205

Craig Wootton, University of Ulster

5 That browsing the web generically through voice can be made possible through

the use of encapsulated RSS and API feeds.

The term „usability‟ in hypotheses 1 – 4 refers to the ease and satisfaction with which

the user interacts with VoiceBrowse.

The same evaluation was given to all 32 participants. This is the recommended

minimum number with which hypothesis testing can be performed (Kraemer &

Thiemann 1987). The evaluation itself aimed to be representative of normal

VoiceBrowse usage, and so two Scenarios of six Tasks were devised to be given to the

participants. Scenario 1 was given to the users during the first part of the evaluation,

and Scenario 2 was given after the period of free time with the system. The 6 Tasks in

both Scenario 1 and 2 are similar in order and complexity, so that comparison between

Scenario 1 and 2 can be made fairly. Furthermore scenarios were presented

alternatively to each participant, so that half received scenario 1 first and half received

scenario 2 first.

The evaluation Scenarios and schedule are also included as Appendix B. Included also

is the questionnaire that was used after both scenarios, devised using the SASSI

questionnaire as a guideline (Hone & Graham 2000, 2001). As the same questionnaire

was used after each Scenario, any difference in answer should reflect the change of user

opinion after becoming more familiar with the system, providing a means to obtain a

quantitative measure of learnability. Dialogues were also recorded and then transcribed

in XML format, annotated with standard interaction parameters such as dialogue length,

prompt length etc., allowing additional quantitative analysis of the data.

Finally, due to the poor performance of the Microsoft Speech Recogniser demonstrated

in the original tests (see Section 7.9), it was decided to simulate speech recognition in

 206

Craig Wootton, University of Ulster

the open version of VoiceBrowse during the initial open ended prompt; achieved by

passing hand coded inputs for each scenario to the Content Manager instead of the

speech recognition result. This was perceived not to be a cause for concern, as the

evaluation was testing hypotheses related to the usability and functionality of dialogue

components, and not the speech recognition performance. As dialogue executions

continue in the same way after the initial prompt for both versions, a fair comparison

can still be made by simulating the speech recognition in this initial phase of one

system.

8.2 VoiceBrowse Evaluation: Results

The questionnaires utilised were derived from the SASSI questionnaire (Hone &

Graham 2000, 2001), which also defines 5 categories of usability metrics from the

questions asked: Efficiency, Annoyance, Cognitive Demand, Likeability and Accuracy.

These are used to analyse the evaluation results, and Table 8.1 overleaf defines these

categories in terms of question numbers from the questionnaire used.

Usability Aspect Questionnaire Numbers

Efficiency 5.4 (reverse polling), 5.5, 5.6

Annoyance 6.6, 6.7, 6.8, 7.4

Cognitive Demand 6.2, 6.3 (reverse polling), 7.1 (reverse polling)

Likeability 4.2, 4.5, 5.3, 6.1, 6.4, 7.2, 7.7

Accuracy 2.1 (reverse polling), 2.4, 2.5 (reverse polling),

4.3 (reverse polling), 4.4 (reverse polling)

Table 8.1: Usability Category Definitions

 207

Craig Wootton, University of Ulster

Questions used for efficiency ratings are concerned with the length of the dialogue, the

speed of the dialogue, and if interactions quickly lead to successful goal completion. A

higher rating reflects that the user decided the dialogue system was quite efficient in

completing the task.

The annoyance rating will be used to give an impression of how displeasing the user

found the interaction, using questions that ask if the dialogue was boring, repetitive,

frustrating and difficult to use. A lower rating here is better, indicating that the user did

not find the interaction annoying.

Cognitive demand is a measure of how much concentration was required of the user

when interacting with the system. This metric is calculated from questions relating to

the state of relaxation of the user, the amount of concentration required during

interaction and if the user had found the system difficult to use. A higher rating is better

than a lower rating due to reverse polling i.e., a higher rating means the user was more

satisfied with the amount of attention involved.

Likeability is concerned with the overall impression of contentment with the system.

Questions used for its definitions include the friendliness and pleasantness of the

system, error recovery, the degree of fun of the interaction, that they felt in control of

the dialogue, that it was easy to learn and that they would use it again in the future. A

higher rating of likeability is better than a lower one, indicating that the user likes the

system more.

Lastly the accuracy rating is concerned with the response of the system to the user‟s

commands. Questions regarding the actions taken after user‟s speech, the reliability of

the system, if the system did what the user expected and if it made a lot of errors, are

 208

Craig Wootton, University of Ulster

used to provide a response accuracy rating. Again a higher rating reflects that that the

user was more pleased with the response of the system.

To quantify the qualitative data, a metric scale from 1 to 5 was used to reflect the user‟s

answer, 1 being the poorest answer available and 5 being the best answer available. The

final set of results recorded from the user questionnaires and VoiceBrowse log files is

too large to be included here, and so has been attached as Appendix C. However, for

illustration and discussion purposes, the main findings are highlighted overleaf in Table

8.2 which presents a summary of the qualitative data used for usability analysis.

Table 8.2 shows firstly the overall comparisons of the Untrained and Trained scenarios

for both Systems 1 and 2. Comparisons of the five usability aspects with respect to

experience level a3nd age are then shown. With regard to experience, „E‟ refers to the

Experienced user group, and „I‟ refers to the Inexperienced User group, and shows the

data from left to right for Untrained Experienced Users System 1, Untrained

Inexperienced Users System 1, Trained Experienced Users System 1, Trained

Inexperienced Users System 1 and so on. Older and Younger user groups are

differentiated as „O‟ and „Y‟ respectively, and a similar presentation is used.

Additionally Table 8.3 presents a summary of the quantitative data, which is used for

performance analysis.

To help illustrate findings, „box and whisker‟ graphs were constructed from the above

tables – the raw data itself from the main results was used to construct the graphs.

Figures 8.1 – 8.23 show the distribution of the data for the five usability aspects under

investigation, comparing each system overall, by age of user and then by experience of

user. Comparisons of the overall interaction parameters between the two systems are

also included (Figure 8.8).

 209

Craig Wootton, University of Ulster

System 1 System 2

Untrained Trained Untrained Trained

 Overall

 3.33 3.42 3.41 3.39

Efficiency 3.67 3.75 3.77 3.79

Annoyance 2.51 2.39 2.35 2.18

Cognitive

Demand

3.25 3.45 3.35 3.61

Likeability 3.76 4.01 3.63 3.80

Accuracy 3.31 3.58 3.80 3.83

Experience

 E I E I E I E I

Efficiency 4.04 3.29 4.00 3.50 3.88 3.67 3.83 3.75

Annoyance 2.38 2.66 2.09 2.68 2.40 2.31 2.31 2.06

Cognitive

Demand

3.54 2.96 3.79 3.13 3.41 3.29 3.79 3.83

Likeability 4.09 3.43 4.23 3.79 3.61 3.66 3.70 3.91

Accuracy 3.33 3.30 3.60 3.56 3.68 3.93 3.75 3.93

 Age

 O Y O Y O Y O Y

Efficiency 3.75 3.58 3.88 3.63 3.75 3.79 3.88 3.71

Annoyance 2.34 2.69 2.00 2.78 2.56 2.16 2.19 2.19

Cognitive

Demand

3.25 3.25 3.50 3.41 2.96 3.75 3.54 4.08

Likeability 3.79 3.73 4.09 3.93 3.43 3.84 3.77 3.84

Accuracy 3.60 3.03 3.96 3.23 3.55 4.05 3.85 3.83

Table 8.2: Questionnaire Results

 210

Craig Wootton, University of Ulster

System

1

 System

2

 Untrained Trained Untrained Trained

Scenario

Duration

468322 366299 452438 286663

<noinputs> 2.063 0.438 0.938 1.88

Barge-Ins 6.625 8.375 1.375 1.688

Help Requests 1.063 0.125 0.000 0.000

New Query

States

7.938 5.313 5.875 5.938

<nomatches> 2.438 1.000 0.188 0.063

Turns per

Scenario

65.313 56.813 42.063 43.688

Table 8.3: Interaction Parameters

Figure 8.1: Scenario Duration w.r.t. User Group

Figure 8.2: Number <noinput> w.r.t. User Group

Figure 8.3: Number of Barge-Ins w.r.t. User Group

Figure 8.4: Number of Help Requests w.r.t. User Group

100000

200000

300000

400000

500000

600000

700000

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

Sc
e

n
ar

io
 d

u
ra

ti
o

n

0

1

2

3

4

5

6

System 1
Untrained

System 1 Trained System 2
Untrained

System 2 Trained

N
u

m
b

e
r

<n
o

in
p

u
t>

0

2

4

6

8

10

12

14

16

18

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

N
u

m
b

e
r

o
f

B
ar

ge
-i

n
s

0

1

2

3

4

5

6

System 1
Untrained

System 1 Trained System 2
Untrained

System 2 Trained

N
u

m
b

e
r

o
f

H
e

lp
 R

e
q

u
e

st
s

Figure 8.5: Number of New Queries w.r.t. User Group

Figure 8.6: Number of <nomatch> w.r.t. User Group

Figure 8.7: Number of Turns per Scenario w.r.t. User Group

Figure 8.8: Overall Rating w.r.t. User Group

0

2

4

6

8

10

12

14

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

N
u

m
b

e
r

o
f

N
e

w
Q

u
e

ry
 S

ta
te

s

0

1

2

3

4

5

6

7

8

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

N
u

m
b

e
r

o
f

<n
o

m
at

ch
>

20

30

40

50

60

70

80

90

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

N
u

m
b

e
r

o
f

Sc
e

n
ar

io
 T

u
rn

s

0

1

2

3

4

5

System 1
Untrained

system 1
Trained

system 2
Untrained

system 2
Trained

O
ve

ra
l R

at
in

g

Figure 8.9: Efficiency Rating w.r.t. User Group

Figure 8.10: SASSI Annoyance w.r.t. User Group

Figure 8.11: SASSI Cognitive Demand w.r.t. User Group

Figure 8.12: SASSI Likeability w.r.t. User Group

0

1

2

3

4

5

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

Ef
fi

ci
e

n
cy

 R
at

in
g

0

1

2

3

4

5

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

SA
SS

I A
n

n
o

ya
n

ce

0

1

2

3

4

5

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

SA
SS

I C
o

gn
it

iv
e

 D
e

m
an

d

0

1

2

3

4

5

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

SA
SS

I L
ik

ab
ili

ty

Figure 8.13: SASSI Accuracy w.r.t. User Group

Figure 8.14: Efficiency Rating w.r.t. User Group

Figure 8.15: SASSI Annoyance w.r.t. User Group

Figure 8.16: SASSI Cognitive Demand w.r.t. User Group

0

1

2

3

4

5

System 1
Untrained

System 1
Trained

System 2
Untrained

System 2
Trained

SA
SS

I A
cc

u
ra

cy

0

1

2

3

4

5

R
at

e
d

 E
ff

ic
ie

n
cy

User Group

0

1

2

3

4

5

SA
SS

I A
n

n
o

ya
n

ce

User Group

0

1

2

3

4

5

SA
SS

I C
o

gn
it

iv
e

 D
e

m
an

d

User Group

Figure 8.17: SASSI Likeability w.r.t. User Group

Figure 8.18: SASSI Accuracy w.r.t. User Group

Figure 8.19: Efficiency Rating w.r.t. User Group

Figure 8.20: SASSI Annoyance w.r.t. User Group

0

1

2

3

4

5

SA
SS

I L
ik

e
ab

ili
ty

0

1

2

3

4

5

SA
SS

I A
cc

u
ra

cy

0

1

2

3

4

5

R
at

e
d

 E
ff

ic
ie

n
cy

User Group

0

1

2

3

4

5

SA
SS

I A
n

n
o

ya
n

ce

Figure 8.21: SASSI Cognitive Demand w.r.t. User Group

Figure 8.22: SASSI Likeability w.r.t. User Group

Figure 8.23: SASSI Response Accuracy w.r.t. User Group

0

1

2

3

4

5

SA
SS

I C
o

gn
it

iv
e

 D
e

m
an

d

User Group

0

1

2

3

4

5

SA
SS

I L
ik

ab
ili

ty

User Group

0

1

2

3

4

5

SA
SS

I R
e

sp
o

n
se

 A
cc

u
ra

cy

User Group

 217

Craig Wootton, University of Ulster

Figure 8.1 shows the average duration with respect to the Trained and Untrained

versions of Systems 1 and 2. It can be seen that training does have an effect on the

scenario duration, particularly in System 1 where the distribution of durations is closer

to the mean. As users became used to the interaction in both systems, tasks were

therefore completed in a shorter time.

Figure 8.2 shows the number of <noinput> events for each of the Trained and Untrained

versions of System 1 and 2. Once again training seems to have more of an effect on

System 1, as the number of <noinput> events decreased dramatically in Scenario 2.

During the evaluation it became clear that during initial interactions with both systems;

users were often unclear at which points they could speak, and what they were required

to say. As discussed later, the consequence of having the instruction prompts positioned

before the main body of the prompt was that users were unclear that the system prompt

had ended and that they had forgotten their options. Therefore, over time, as reflect on

the Figure 8.2, the number of <noinputs> decreased dramatically due to the standard

dialogue mechanisms being available and users learning these throughout the scenarios.

Furthermore the number of barge-ins also increased after training for each system,

shown in Figure 8.3. As users got to learn the available instructions in System 1 at each

stage of the dialogue, they became increasingly confident with interrupting the system

to progress the dialogue faster. Tangible examples of such a case include the

listContentItems dialogue state – most users waited for the three content items to be

output before speaking their desired story number to the system, whereas when their

time with the system increased, users in general said the desired story number as it

appeared in the output prompt.

 218

Craig Wootton, University of Ulster

This conclusion is reinforced by the decreasing number of help requests after training,

shown in Figure 8.4. It was observed that, for users that requested use of the help

facility early in the evaluation, they did not do so for the rest of the scenario, indicating

both the effectiveness of the help function and the learnability of the system.

The number of „NewQueryStates‟ is an important interaction parameter, as this

indicates how troublesome users found the interaction. A „NewQueryState‟ is entered

at the beginning of each request for information, so if a user is having trouble

interacting with the system, then the number of „NewQueryStates‟ will be more than 1

as the system will be repeatedly asking the user for their information request.

Consistent with the decrease of <noinputs> and <nomatches> shown in Figure 8.6, the

decrease of „NewQueryStates‟ is a further indication of the learnability of VoiceBrowse

in a short period of time.

Figure 8.7 presents the average number of turns per scenario for each system group,

which shows a slight decrease in System 1 after training - another indication of the

system‟s learnability. However the average number of turns per scenario slightly

increases after training in System 2, an indication that this system is more usable

without training than System 1 without training. There exists more room for

improvement with System 1 from the user‟s perspective, and so throughout Figure 8.1

to 8.7, System 2‟s minimal difference after training is not alarming.

Figure 8.8 reflects the computed overall scores from the user questionnaires, per user

group. Overall however, Figure 8.8 shows a slight increase in mean satisfaction after

training for both systems. The overall impact of pre and post training on each system

with respect to efficiency, annoyance, cognitive demand, likeability and accuracy also

show slight improvements, illustrated in Figures 8.9 – 8.13. However this overall

 219

Craig Wootton, University of Ulster

comparison offers only a high level representation of the usability of both systems, and

the preceding figures illustrate a more accurate account of how the different users‟ age

and experiences affected performance.

The next five figures clarify the five aspects of usability with respect to experience,

categorised by system and by training group, leading to eight different user groups in

total, allowing comparison to be made for each system, before and after training, and

also between experience levels. Figure 8.14 shows the rated efficiency for each user

group, and it can be seen that, in general, Experienced users recorded a higher

efficiency rating than Inexperienced users. Overall the effect of training on rated

efficiency for both Experienced and Inexperienced users is minimal, and as predicted,

Inexperienced users showed a preference to interact with System 1 over System 2 due to

the system directed dialogue guiding the user to task completion.

Figure 8.15 presents a less varied level of distribution of annoyance ratings with respect

to user groups - a user‟s experience level seems to have no effect on level of annoyance,

although Inexperienced users appear less annoyed when using System 1 than System 2.

The effect of training on annoyance seems to be minimal.

Greater variation is observed in Figure 8.16 which shows the cognitive demand for each

user group. Common across all groups is that Experienced users record a higher score

than Inexperienced users which leads to a smaller cognitive demand due to reverse

polling. Furthermore training seems to have an equal effect across all users groups,

with each showing a similar increase in rating for Scenario 2. The cognitive demand

does not appear to be affected by system type, signifying that content delivered through

voice is cognitively independent of the dialogue strategy used.

 220

Craig Wootton, University of Ulster

A similar representation of data is observed in Figure 8.17, which displays the

likeability ratings for each user group: Experienced users constantly record a higher

likeability rating than Inexperienced users; the effect of training is consistent across all

user groups, each showing similar increases; and likeability of each user group when

compared to the same user group that interacted with the alternative system is

inconclusive. The ratings of all user groups were normally quite high, indicating that

although likeability does depend on both experience and training, all user groups tended

to like interacting with the system initially.

Lastly in the comparison of experience levels is the accuracy ratings recorded by the

different user groups (Figure 8.18). The observations with respect to accuracy were

opposite to those witnessed with respect to cognitive demand and likeability – that is,

Inexperienced users constantly recorded a higher accuracy rating than Experienced

users. Additionally both training and system type had an effect on accuracy; it tends to

increases after training; and the same user group in System 2 has an increased accuracy

rating compared with the same user group in System 1. This is an interesting finding

which could indicate that, due to a better knowledge and practice of graphical web

browsing, Experienced users have higher demands than Inexperienced users with

respect to browsing online content through voice. As the Inexperience users had little

or no prior usage of graphical web browsers, the consequence was that they had no prior

knowledge on which to base accuracy conclusions, and therefore recorded consistently

higher accuracy ratings than their Experienced counterparts.

The last five diagrams illustrate the usability aspect with the last category of interest –

the age of the user. Figure 8.19 shows that, with the exception of users interacting with

System 2 during the Untrained phase of the evaluation, Young/Old comparisons

 221

Craig Wootton, University of Ulster

indicate that Older users constantly rate the interaction as more efficient. It is thought

that, similar to the accuracy results from the Experienced/Inexperienced comparison

(Figure 8.18), Older users have less prior knowledge of web browsing, and therefore a

lesser benchmark to compare the interaction to. Younger users, however, who are

expected to be frequent users of technology, or at least have a higher perception of

technology, would therefore be comparing the efficiency of voice browsing to graphical

browsing. This would explain therefore why Older users record a higher efficiency

rating than Young users. Surprisingly System 2 was generally rated less efficient than

System 1, and the effect of training is minimal on increasing the level of efficiency -

beginning in an open dialogue in System 2, which could lead to a high expectation of

the interaction, then switching to system directed after the initial query, perhaps impacts

the perceived efficiency of the system. This indicates that dialogue strategy does have a

direct effect on the perceived efficiency of a voice browse system.

Figure 8.20, which presents the annoyance level with respect to user group, shows no

correlation between age and the level of annoyance during interaction. As expected

however, Older users seems to be less annoyed with System 1 whilst Younger users

seem to be less annoyed with System 2. Lastly the effect of training on annoyance

levels is inconclusive, with both decreases and increases in rating being observed after

training.

Similar to the findings of cognitive demand with respect to experience (Figure 8.16),

Figure 8.21 shows also that Younger users consistently scored a better cognitive rating

than Older users. A correlation between cognitive demand, age and system type can

also be observed, as it can be seen that Older users seem to rate System 1 with a better

cognitive demand than System 2, but Younger users however seem to rate System 2

 222

Craig Wootton, University of Ulster

with a better cognitive demand than System 1. This seems to prove the hypothesis that

Older users will prefer System 1 whereas Younger users will prefer System 2. This will

be tested in the next section for significance. Once again, training also seems to have an

effect on cognitive demand, with all user groups recording an increased rated in

Scenario 2.

Figure 8.22 shows the rated likeability with respect to the different user groups. No

comments concerning differences between age groups can be made with any

confidence; however it appears that likeability does increase after training, and that

System 2 consistently scores slightly higher ratings than System 1. This effect of

training and dialogue strategy will be tested for significance in the next section.

The findings from Figure 8.23, showing the response accuracy with respect to user

group, are similar to that of rated efficiency, presented in Figure 8.18 – that is that Older

users constantly record higher response accuracy than Younger users. This is arguably

also due to their less demanding requirements regarding technology, and therefore rate

voice browsing with more appreciation than Young users. Both training and System 2

led to the same or slightly improved response accuracies before training and with

System 1, indicating that usage and dialogue strategy do have an effect on response

accuracy, which will be tested for significance in the following section.

8.3 VoiceBrowse Evaluation: Discussion

The results of the evaluation, illustrated with respect to system type, experience level,

and age, will now be further explored and interpreted, and observations will be tested

for significance to give an accurate understanding of the results.

 223

Craig Wootton, University of Ulster

8.3.1 Discussion: Hypothesis 1, Hypothesis 4 and Hypothesis 5

The increasing mean overall rating of the interactions, shown in Figure 8.8, represents

increased satisfaction across the four different user groups – Untrained System 1 users

recorded the least overall score, followed by Trained users of System 1, then Untrained

System 2 users, whilst the Trained System 2 user group recorded the highest overall

score. This suggests that System 2 offers the most usable version of VoiceBrowse –

even for Untrained users when compared to users who have been trained on System 1.

However, the distribution of the overall scores is similar between the Untrained and

Trained user groups of System 2, showing that increased usage of System 2 does not

lead to increased performance on the system in general. This can be confirmed with

certain t-tests showing that only scenario duration, the average system turn time, the

number of time outs and cognitive demand show any significant improvement after

training (p=0.00, p=0.001, p=0.009 and p=0.005 respectively). This is due to System 2

accepting the initial user‟s request in an open-ended manner, whereas there is more

learning to be done by the users when initially using System 1, as they are required to

request information in a specific way.

To further understand this comparison between systems with regard to usability and the

effect of training, the overall rating was broken down and studied with regard to the

categories mentioned previously, and Figures 8.9 to 8.13 present the distribution of

results in these categories for the different user groups. The graphs show that users‟

ratings with regard to efficiency, annoyance, cognitive demand, likeability and accuracy

increase from Untrained to Trained groups and from System 1 to System 2, as

previously discussed. However, t-tests on the associated data show that none of these

increases are significant between System 1 and system 2, although Accuracy is an

 224

Craig Wootton, University of Ulster

exception, which shows a significant difference between System 1 and System 2 during

the Untrained phase (p=0.007), indicating that users without prior use of the system find

that it is an open-ended system that responds better.

Regarding differences observed after training, a significant increase in both the

likeability and response accuracy was also observed after training for System 1

(p=0.033 and p=0.01 respectively). A significant increase in cognitive demand was also

observed after training for both Systems 1 and 2 (p=0.013 and p=0.005 respectively).

With respect to the performance of System 1 and System 2, Figures 8.1 to 8.7 present

the key findings after analysis of the annotated dialogue data from the log files, and the

interaction parameters vary more in difference than the subjective measures already

discussed.

It can be seen that the scenario duration (Figure 8.1) decreases in both systems after

users have received training, and as expected, System 2 has shorter scenario durations

than System 1. This reduction is significant after training between System 1

(366299ms) and System 2 (286663ms) (p=0.002). In System 2, the duration decreased

from 452438ms to 286663ms after training, and the decrease of the scenario duration in

System 1 is highly significant (p=0.007), down from 468322ms to 366299ms, showing

that the training phase does have an effect on performance for System 1. Once again it

can be said that the dialogue strategy therefore has an effect on the task duration – in

System 1 the closed-approach requires time from the user to learn how to interact with

the system, and so as the number of interactions increase with the system, the average

task time decreases.

 225

Craig Wootton, University of Ulster

The reduction in the number of <noinput> elements across user groups, shown in Figure

8.2, is confirmed to be significant between System 1 and System 2, decreasing from

2.063 to 0.938 for Untrained users (p=0.047). Furthermore, learnability is also evident

as there is a highly significant reduction in the number of <noinput> elements after the

training phase for both systems, decreasing dramatically to 0.438 and 0.188 respectively

(p=0.007 and p=0.009) for Systems 1 and 2. Many users, for example, failed to provide

input the first time that they encountered the navigational controls „next‟, „back‟ and

„repeat‟ during the output of the document descriptions. However, during subsequent

attempts, they were successful in both speaking at the right time, and also using the

right command.

This commonly occurred during Scenario 1 Task 2 – a task which asks the user to

access more information regarding a story, deliberately chosen to be in the second set of

three stories that are output to the user. The system iterates through the navigational

commands available at the start of the prompt, followed by the first three stories.

Consequently however, once the first three stories have been output, users often

experienced a <noinput> error as they either did not realise that they could speak, or had

forgotten what they could say due to the length of the preceding prompt. However, in

subsequent tasks, no such error was experienced, as the user had quickly learnt how to

proceed beyond the third story.

The same observation is also true for the reduced number of <nomatch> elements

(Figure 8.6), which significantly reduced after training for System 1 from 2.438 to 1

(p=0.015), once again highlighting the initial time needed for users to adapt to the

closed method of dialogue control. System 2 always had a lower number of <nomatch>

elements when compared to System 1 during both the Untrained and Trained phase of

 226

Craig Wootton, University of Ulster

the evaluation, a difference tested to be significant in the trained dialogues (p=0.008).

As a <nomatch> error was commonly thrown when the system could not identify a

relevant feed to satisfy the user‟s request, this explains why the number of <nomatch>

errors were always lower than with System 1, as System 2 has limited potential in a

dialogue for a <nomatch> to occur.

The number of Barge-Ins (Figure 8.3) also increased with usage – increasing from 6.625

to 8.375 in System 1 and from 1.375 to 1.688 in System 2 after training. Although the

increase was tested to be not significant after training (p=0.134 and p=0.289

respectively), this is a further indication of the high learnability associated with both

systems. Additionally, the number of Barge-ins for System 1 was always greater than

System 2, reflecting the lower number of opportunities in System 2 for the user to barge

in.

The number of help requests (Figure 8.4) was 0 in both the Trained and Untrained

dialogues for System 2. The mean of 1.063 help requests per dialogue in System 1

during the Untrained phase was shown to be significantly higher than System 2 in the

same phase(p=0.045), however the number of help requests reduced after training for

System 1 to 0.125, although not significantly (p=0.069). It was common for users

interacting with System 1 to request the help functionality during initial use with the

system – however, as time progressed, and their familiarity with the system increased,

there was no need for the help functionality once again.

The lower number of new query states (Figure 8.5) in System 2 compared to System 1

was tested to be highly significant in the Untrained phase of the evaluation (p=0.001).

This indicates that during initial interactions, users found requesting the correct

information troublesome in System 1, often having to start a new query before being

 227

Craig Wootton, University of Ulster

able to proceed. After training however, the number of new query states decreases

significantly for System 1 (p=0.001), arguably again due to the learnability of the

system. Additionally, the significantly reduced number of user turns per scenario

(p=0.048) in System 1 after training reinforces this argument, showing that the user has

learnt in the short time available how to proceed in the dialogue to the relevant feeds.

The recorded number of turns per scenario (Figure 8.7) decreased significantly in

System 1 from 65.313 to 56.813 (p=0.0035), however slightly increased in System 2

from 42.063 to 43.688 after training. As expected, System 2 always required a smaller

number of turns per scenario, also tested to be a significant difference between the

systems after training (p=0.001). This reinforces the emerging pattern that learnability

is evident more so in System1 than System 2, due to the initial closed dialogue of

System 1 requiring more learning from the user.

In conclusion the evaluation supports both Hypotheses 1 and 4 that system type

(representing dialogue strategy) will have an effect on usability and performance, and

that learnability will be evident in the system – evidence of the latter has been observed

to be significant in many of the interaction parameters presented, such as the average

scenario times being reduced, in particular for System 1, from 78s in Scenario 1 to 61s

in Scenario 2 (p=0.007).

Many tangible examples can be provided to illustrate learnability – user 15 for example

fails to complete Scenario 1 Task1, and gets confused interacting with the system,

including after requesting help. However, a similar task in Scenario 2 Task 1 results in

a successful completion in only 48 seconds. It is evident also that learnability is high

within Scenario 1 itself – the same user who failed to complete Scenario 1 Task 1 did

manage to complete Task 2 of the same scenario. Although this is an extreme example,

 228

Craig Wootton, University of Ulster

many of the dialogues show a progression of learnability within the first two to three

tasks of the Scenario 1.

Furthermore the included help and disambiguation facilities of the Dialogue Manager

also played a key role in the usability of the system. The use of the „list‟ function was

found to be quite common amongst the first tasks of the evaluation. Not knowing what

to say during their first interaction, the key help word „list‟ appears at the end of the

initial prompt, and so is the last word that the user hears before the system expects user

input. For example, user 5 during their first interaction uttered the word „list‟. Once

they had heard the possible options, and uttered “done” to signal they had finished with

the list function, their next utterance was then “BBC Northern Ireland” which allowed

them to complete the first task. It is important to note that this list function was not

demonstrated to any user before their evaluation, and so completing this important step

toward using VoiceBrowse was based on their own intuition.

Regarding Hypothesis 5, criteria to confirm this hypothesis are somewhat more difficult

to quantify. Each task presented to the users during the evaluation was unique, meaning

that the above performance and usability evaluation was conducted based on content

accessed from twelve different web sites and four different providers (BBC, Sky, eBay

and Travel Fusion). The successful completion of all scenarios by each participant

could itself be evidence that browsing the web through voice using RSS and API feeds

is feasible.

8.3.2 Discussion: Hypothesis 2

The overall comparison contrasting systems presented in Section 8.3.1 does not give an

accurate reflection of the usability and performance of each system, as the different user

 229

Craig Wootton, University of Ulster

groups were treated as one. Hypotheses 2 and 3, which categorise the data by

experience and age of the users offer more insight into the usability and performance of

VoiceBrowse, which is expected to differ for age and experience of user.

Figure 8.14 shows the efficiency rating for the different user groups, generally

illustrating that Experienced users found the interaction more efficient than

Inexperienced users – a difference that was found to be significant before training with

System 1 (p=0.041). No other comparison between either system or experience level

produced a significant difference, indicating that, surprisingly, efficiency does not

depend on either experience or dialogue strategy.

As previously discussed, Figure 8.15 produces no obvious difference of annoyance

rating with respect to either experience or system type, suggesting that generally this

usability aspect also does not depend on either.

However, the difference reported in Figure 8.16 that Experienced users achieved a

higher cognitive rating, resulting in a lower demand, is significant between Experienced

and Inexperienced users interacting with System 1 (p=0.033). This difference is of an

even higher significance after training (p=0.001). This was expected due to the prior

knowledge of web browsing found in the Experienced group, and as users of

technology, it is assumed they would be able to learn or adapt to a new medium quicker

than Inexperienced users.

Independent of system however, the effect of training on the cognitive demand is

significant, both systems recording a higher cognitive rating (p=0.013 and p=0.005)

than before training. Furthermore a significant difference is also observed for

Inexperienced users after training between System 1 and System 2, with Inexperienced

 230

Craig Wootton, University of Ulster

users who interacted with System 2 requiring less cognitive demand than users

interacting with System 1 (p=0.006). Not only is this an indication of learnability in the

two systems, it additionally proves that, independent of experience level, improvement

is shown with either system in a short space of time, with System 2 producing decreases

in cognitive demand for both Experienced and Inexperienced users (p=0.038 and

p=0.061 respectively). Inexperienced users interacting with System 1 also produced a

significant decrease (p=0.08) of cognitive demand whilst the difference before and after

training for Experienced users of System 1 was not significant (p=0.104). This further

suggests that all users had to concentrate initially during the interactions until learning

had taken place, at which point all users recorded that they had to think less when using

the system – however System 2 seems to facilitate this better than System 1.

Similar arguments can be made concerning the likeability of different experience levels

– that is Experienced users significantly liked the interaction more than Inexperienced

users (p=0.002). Once again this was expected, as it is assumed that Experienced

people who are users of the Internet tend to like technology and new mediums for

interaction more so than those who do not. However, although training had an

increased effect on likeability for all user groups, only the Inexperienced users for both

Systems 1 and 2 showed a significant increase (p=0.01 and p=0.052 respectively). This

seems to suggest that initial impressions of Experienced users are more fixed that those

of Inexperienced users, who are open to learning and improving their impressions of the

system. Lastly, as noted before, comparison of the same user group interacting with the

alternative system was inconclusive, however, a significant increase in likeability was

found between trained Experienced users of System 1 and System 2, with users of

System 2 rating the likeability higher (p=0.062). This further establishes the belief that

 231

Craig Wootton, University of Ulster

Experienced users would prefer a more open ended system than Inexperienced users,

confirmed here to be significant after training has been received by both user groups.

The previously discussed difference of increased accuracy ratings by Inexperienced

users when compared to Experienced users (Figure 8.18) was found not to be

significant. Furthermore, with regard to the noted increase in accuracy after training,

this was also found not to be significant, except for Inexperienced users interacting with

System 1, who reported a significant increase of accuracy (p=0.083). This further

suggests that the difference in usability before and after training for both user groups

interacting with System 2 is minimal, due to the forgiving nature of the open ended

dialogue, and that there is therefore more potential for learning in System 1. This is

reinforced by a significant difference in accuracy that was recorded between System 1

and System 2 Inexperienced uses before training (p=0.035), although after training there

was no significant difference.

Regarding interaction parameters with respect to Experienced level of users,

Experienced users had significantly more <nomatches> than Inexperienced users in

System 1 (p=0.001). This was not expected, and could be a side effect of the

knowledge of web browsing Experienced users had brought to the evaluation, getting

confused with the new interaction method, whereas the Inexperienced group who are

not users of technology were more willing to listen to the system‟s instruction. After

training however no significant differences could be found in either system, suggesting

that the performance of browsing online content is not dependent on prior experience of

web browsing, however usability is heavily affected by this user characteristic.

 232

Craig Wootton, University of Ulster

8.3.3 Discussion: Hypothesis 3

The observation that Older users rated the interactions as more efficient than Younger

users has been tested to be not significant. Additionally, any differences observed after

training and between System 1 and 2 were also not significant. Whereas experience

level therefore had a significant effect on efficiency, age did not, and training and

dialogue strategy did not have a significant impact on efficiency with regard to different

age ranges.

The difference in annoyance levels between Older and Younger users (Figure 8.20) was

shown to be significant after training, with Older users scoring a significantly lower

annoyance rating than Younger users (less annoyed) (p=0.016). No significant

difference was observed for the same user group before and after training, or when

compared to the alternative system. This is an interesting finding, indicating that Older

users were generally more accepting of the technology than Younger users, perhaps

suggesting that they are more patient with a dialogue system than Younger users, who

are perhaps familiar with the instant delivery of content through a graphical user

interface.

In Figure 8.21, the observed difference between Older and Younger users regarding

cognitive demand was tested to be significant for System 2 during the Untrained

Scenario – that is Younger users rated a higher cognitive score, requiring less cognitive

demand, than Older users (p=0.0036). This proves that, as expected, Older users found

that they had to concentrate more initially during the dialogue. Training does have a

significant effect however for Older users, who show a significant decrease in required

cognitive demand (higher rating) in both System 1 and System 2 after training than

before training (p=0.002 and p=0.031 respectively), reflecting further the learnability of

 233

Craig Wootton, University of Ulster

the system. Regarding Younger users after training, no significant decrease in cognitive

demand was recorded, indicating that Younger users found that they had to concentrate

just the same after training as before – however they did seem to significantly prefer

System 2 over System 1, recording a significant decrease in cognitive demand

(p=0.018) for System 2 compared with System 1. This reinforces the original

hypotheses that Older users would show an increase in performance after training, and

that Younger users would prefer System 2 to System 1 due to the flexibility of the

dialogue.

As previously discussed, no obvious differences between age groups could be identified

for likeability ratings (Figure 8.22), and t-tests proved that any differences in likeability

were indeed not significant. Dialogue strategy also produced no significant difference

in likeability for the different age groups, but the effect of training was significant for

Older users interacting with System 2, who showed an increase in likeability after

training (p=0.026). Once again, this could be an indication that Older users become

more pleased with the system over time, whereas Younger users were perhaps expecting

more from the system.

Regarding response accuracy (Figure 8.23), Older users recorded significant increases

over Younger users in System 1 before and after training (p=0.002 and p=0.024

respectively). This could be a further indication that Younger users have a higher

demand with regard to browsing the Internet though voice and Older users are therefore

more pleased with the system than Younger users. The noted differences for the same

user group after training and with System 2 over System 1 were shown to be not

significant.

 234

Craig Wootton, University of Ulster

Further significant differences between Older and Younger users interacting with

System 1 were observed after training that were not evident before. Already discussed

are the significantly higher response accuracy and annoyance rating by the Older users

(p=0.024 and p=0.016 respectively) – however Older users also took significantly fewer

turns per scenario than Younger users (p=0.016), and had significantly fewer

<noinputs> than Young users (p=0.042), after training – all of which resulted in

significantly shorter durations than Younger users (p=0.039). Interestingly however,

System 2 shows only one significant difference between age groups after training, with

Younger users recording significantly more barge-ins than Older users (p=0.001) – this

is a further indication that learnability is greater in System 1, specifically amongst Older

users.

8.4 VoiceBrowse Evaluation: Conclusions

Analysis of the data has supported all five hypotheses regarding the usability and

feasibility of browsing the Internet through Voice. Furthermore, due to System 2 being

more usable, as discussed in Section 8.3.1, the effect of learning was minimal, with

similar performance and user rating records for Scenario 2 of the evaluation. The only

parameter to show a significant change was a decrease in the number of timeouts

(p=0.009), a change also shown in System 1 (p=0.007).

In contrast the training phase for System 1, which was not as usable as System 2

initially, had a greater effect on usability. Shorter dialogue durations, a lower number

of turns per dialogue, fewer <noinputs> and <nomatches> all confirm that, after users

initially interacted with the system, learnability was evident, and within a short period

 235

Craig Wootton, University of Ulster

of time the performance of System 1 increased (p=0.007, p=0.048, p=0.007 and

p=00015 respectively).

Furthermore after training, differences between Older and Younger users became more

evident as Older users increased their usability ratings, sometimes significantly, more

than Younger users. This suggests that usability levels recorded by Younger users

generally remain static or improve slightly after training, whereas Older users improve

more than Young people after Scenario 1, recording a correlated increase in scores such

as likeability and cognitive demand.

Learning had the opposite effect on experience, with any difference between

Experienced and Inexperienced users decreasing after training. This suggest that initial

experience of web browsing is desirable in terms of usability, however, after interacting

with the system for a short period of time, any inadequacies regarding experience level

are generally compensated, and the performance thereafter is not significantly affected.

However, this could argue for the need for adaptive techniques in the system, leading to

a faster learning phase for Inexperienced users whilst not decreasing the performance of

Experienced users.

Interestingly, the level of experience did have an effect on the rated accuracy and

efficiency of the system, with Inexperienced users scoring these aspects higher than

Experienced users. This suggests that associated demands of web browsing, such as the

extraction and delivery of content, and the presentation through voice, are higher for

Experienced users due to their already formulated perceptions of web browsing through

graphical user interfaces, and the speed of content delivery through this medium.

Without any prior web browsing through a graphical user interface, less experienced

users were generally happy with the performance of VoiceBrowse.

 236

Craig Wootton, University of Ulster

While user performance generally gets better after training, some subjective ratings

from users did deteriorate, although any difference that did occur was small and

insignificant - indicating that users judged the system in their first Scenario slightly

better than in the second, possibly reflecting the user‟s opinions of the system settling

down after their initial first impressions.

Finally, mention must be made of the narrative comments recorded by participants

following the evaluation. Although entirely subjective, providing no empirical

measures for comparison, comments can offer accurate reflections on the users‟

thoughts regarding the interactions overall, including considerations of what they would

like specifically improved in VoiceBrowse.

Generally the comments indicated that users were happy with the interaction, that they

could see the potential of such a system, and that they felt comfortable completing the

desired goals. Common responses to “Would you use VoiceBrowse?” included positive

answers, with users recognising the „hands free‟ possibility of voice browsing, allowing

them to browse online content whilst doing other tasks that require hands on access –

furthermore this was a common response to “What did you like most about using

VoiceBrowse?”

Whilst positive comments highlighting the user‟s satisfaction with the system add

weight to the argument for such a system, there is perhaps more benefit in exploring

comments relating to what the users did not like about the system, and what they felt

needed to be overcome in future versions. Shared feedback included users stressing that

they did not feel in control of the interaction during initial usage, and that they had to

concentrate more at the beginning to learn how to use the system for the remainder of

the tasks – opinions that were quantified from available numerical data. One user went

 237

Craig Wootton, University of Ulster

on to recommend an adaptable system that offered more help during opening dialogues,

reducing this guidance as time progressed, in response to their feelings that the system

became too repetitive during the evaluation.

In summary, the evaluation consisted of 32 participants, split evenly between two

experience and two age levels - the majority of whom have never used a spoken

dialogue system before. Two scenarios were presented for completion, with the same

questionnaire presented after each scenario. The evaluation has shown that generically

managed dialogue is possible, driven by online content and knowledge extracted from

various unstructured sources. All users groups were able to use the system, with Older

users and Inexperienced users improving at a greater level than Younger users and

Experienced users, leading to smaller differences between users groups after training.

 238

Craig Wootton, University of Ulster

Chapter 9: VoiceBrowse Conclusions

The following chapter concludes the thesis by summarising the research and its

contributions. Finally future work to further the research is presented in Section 9.2.

9.1 VoiceBrowse Conclusions: Summary of Thesis

This thesis has been concerned with the development and evaluation of a dynamic

dialogue system that can access unstructured online content for use in a dynamically

evolving spoken dialogue system. Previous research on dynamic dialogue systems was

explored, with the following shortcomings identified:

 Dynamic dialogue systems are generally developed to interact with one domain

only.

 Dynamic dialogues systems require a well structured domain representation,

normally created specifically for each system.

 Dynamic dialogue systems built to interact with online sources generally interact

with only one web site or content provider.

Based on these current limitations, requirements were devised to realise a spoken

dialogue system that would provide a dialogue interface to the Internet. The

architecture of VoiceBrowse was then introduced and explored in detail, followed by a

discussion of its implementation. Evaluation of the system was then undertaken with

regard to its usability and technical performance, and results showed some significant

findings, which can be summarised as follows:

 239

Craig Wootton, University of Ulster

 Training of users interacting with System 1 (closed approach) had a stronger

effect on performance and ratings than with users of System 2.

 After training, differences in performance and usability between Older and

Younger users became more pronounced.

 However, differences in performance and usability of Experienced and

Inexperienced users became less pronounced after training.

 While user performance generally increased after training, the ratings

(qualitative) showed no change or a slight decrease – this effect was not very

strong or significant, and it is believed that there is a general tendency that users

judged the system slightly better in the first dialogue than in the second after

training.

9.2 VoiceBrowse Conclusions: Summary of Research Contributions

The contributions of the research can be divided into technical advances and evaluations

of usability. Dynamic dialogue systems are generally dependent upon specifically

crafted and well structured sources of domain knowledge that are readily accessible to

the dialogue manager. VoiceBrowse however interacts with more than one type of

domain knowledge from multiple sources that vary and are unstructured. This has

furthered current dialogue research by the realisation of a generic dialogue manager that

provides a dialogue interface to the Internet. The research has shown that, by making

use of existing XML technologies, content from different online sources can be

extracted and utilised in dialogue, overcoming the aforementioned shortcomings.

Additionally usability research to date, with regard to spoken dialogue systems, has

concentrated mostly on task-based dialogues, and with assisting users of varying needs

 240

Craig Wootton, University of Ulster

to complete a set task in the quickest time that their skill level allows. Usability

research for generic dialogue systems that interact with numerous domains in an

opportunistic way is currently lacking, with no current in-depth study available to offer

suggestions or knowledge in how to meet users‟ different needs within this application

area. This research has shown that, although a generic dialogue manager for browsing

the Internet is technically possible, both age and prior web browsing experience have an

effect on usability – initial interactions highlight large differences in the needs of these

different user groups, although after a short period of usage, the differences are

minimised.

Younger users do seem to prefer the more flexible interaction that is possible with a

user led initiative, whilst older users seem to prefer a more system directed initiative

through the interaction. Furthermore, younger users tend to have higher expectations

regarding the performance of such systems and therefore are less satisfied overall than

older users when browsing online content through dialogue. To develop a generic

dialogue manager that is truly usable and efficient for all users, it is clear that a single

dialogue strategy is not the most efficient mechanism for doing so, and different

strategies to meet the varying needs are therefore required. Consequently, one major

contribution of the evaluation study has been to identify the need for adaptive spoken

dialogue systems that cater for the needs of different user groups. Moreover, as

differences between the groups tend to change over time, it is important that this

adaptation evolves dynamically to meet the changing needs of the users.

 241

Craig Wootton, University of Ulster

9.2 VoiceBrowse Conclusions: Future Work

Potential future research could see work continue with VoiceBrowse in two directions:

the realisation of those architectural components not focused on in this study; and the

refinement of the current VoiceBrowse implementation.

A User Manager was included as part of the original conceptual architecture presented

in Chapter 4, although not developed as it was outside the scope of the research focus

and could indeed be the topic of a further dissertation. However a User Model would

certainly enhance the current VoiceBrowse system, leading to more tailored interactions

for each user. It is envisioned that, over time, a model would be constructed of the

user‟s interests based on requests made during dialogues with VoiceBrowse. Further

requests would then be passed to the User Model first to refine the query, before passing

the request on to the Content Manager. Also, further web technologies could be used to

build up an online repository of feeds available for VoiceBrowse, allowing Information

Retrieval techniques such as Collaborative Filtering to suggest additional feeds for a

user based upon the browsing habits of similar users.

A second area not developed in this research is the Device Manager, a component that

would provide facilities for managing multiple devices and their capabilities within the

VoiceBrowse environment. The current version of VoiceBrowse has been developed to

operate on the medium of telephony - however, due to the multimedia nature of online

content, there would be great potential for a system that could also provide video and

graphical content. Once the Content Manager has returned content for output to the

Dialogue Manager, the Device Manager could then infer if a more suitable device is

available to output the content, and if so, switch the interaction to this device if desired

by the user.

 242

Craig Wootton, University of Ulster

Regarding enhancements of the current functionality, there is scope to improve the post-

delivery phase of the API results to the user, which suffers from a current lack of

dialogue during post delivery. Typical task-based dialogue systems allow some degree

of refinement of results as presented to the user, as the various means of the grouping

and classification of the results in one domain can be set by the developer during the

development stage. In a multi-domain system that has no prior knowledge of, and no

active comprehension of the task-based data, the rules of query refinement are not

known in advance by the dialogue manager. It is predicted that some form of language

understanding component would be required to interpret the results and respond

specifically to query modification – having a set of flight results for example, being able

to resolve queries such as “Give me flights in the morning” would be needed, made

more complex due to the multi-domain nature of VoiceBrowse. Furthermore an

alternative, more automated way of API inclusion should be investigated to remove the

manual work currently needed to add an API into the VoiceBrowse environment.

Also investigated briefly during the research were enhancements to the standard Cosine

Similarity function used in VoiceBrowse, including the use of WordNet to allow for the

inclusion of synonyms when matching a user‟s query to the document space. Although

the preliminary results using WordNet were similar or slightly less accurate than the

standard benchmark function, further study of using this resource and maximising its

potential during the Content Spotting phase should be explored in more depth.

This thesis started with a quotation from Armstrong (1994) that asked the question

“When should we start using such [speech] interfaces?” In 1994, Armstrong‟s belief

was that that time should be „now‟. Perhaps the current lack of speech based interfaces

in the public domain reinforces the difficulties of recognising, understanding and

 243

Craig Wootton, University of Ulster

generating speech, as well as usability questions that also arise when using such

systems. Now that these issues are understood and to an extent addressed, the next

stage of dialogue research has to see researchers thinking of dialogue as a generic

interface to different domains and applications in order to increase the awareness and

the usefulness of such systems.

Public perception of speech based system is generally that they should be capable of

interaction in any domain, topic, or task, with robotic like accuracy in their speech

recognition, understanding and generation. Current methodologies of hand crafting

dialogue do not support such notions, and it will be the advancing techniques of

utilising statistical approaches that become the future of dialogue research. However

the current lack of standards and specifications for such systems could inhibit future

progress and it is paramount that research concentrates on developing such standards.

To conclude: this research has identified current shortcomings regarding dynamic

dialogue systems, and their reliance on a well structured and purposely crafted source of

domain knowledge; and it has provided a generic solution in the form of VoiceBrowse,

a spoken dialogue system that utilises existing XML technologies to realise generic

interactions based upon online sources of varying content types. The usability of this

approach was explored in a series of evaluation studies, with findings suggesting that

dialogue strategy, age and experience all have significant effects to various degrees,

before and after training. Future research based on the current work should address

issues of user modelling and device management, and enhance the Content Spotter

currently in use.

 244

Craig Wootton, University of Ulster

References

Anonymous, 2006. RSS File Forma. Available from:

http://en.wikipedia.org/wiki/RSS_%28file_format%29 [Accessed 18
th

 July 2006]

Allen, J., Ferguson, G. & Stent, A. 2001. "An architecture for more realistic

conversational systems". 6th international conference on Intelligent UserInterfaces, 14-

17 January 2001 Santa Fe, USA. Pp. 1-8.

Andersen, O. & Hjulmand, C. 2005, "Access for all - a talking internet service". 9th

European Conference on Speech Communication and Technology, InterSpeech 2005, 4-

8 September 2005 Lisbon, Portugal. Pp. 457-460.

Armstrong, B. 1994, "Speech recognition application program interface committee". In

Proceedings of AVIOS 1994, 20-23 September 2004 San Jose, CA. Pp. 19-26.

Ayres, T. & Nolan, B. 2006, "Voice activated command and control with speech

recognition over Wi-Fi", Science of Computer Programming. vol. 59, no. 1-2, Pp. 109-

126.

Bangalore, S., Hakkani-Tur, D. & Tur, G. 2006. "Introduction to the Special Issue on

Spoken Language Understanding in Conversational Systems", Speech Communication,

vol. 48, no. 3-4, pp. 233-238.

Batacharia B., Levy D., Catizone R., Krotov A. & Wilks Y. 1999. “CONVERSE: A

conversational companion”, Machine conversations. Edited by Y. Wilks.

Boston/Dordrecht/London: Kluwer. Pp. 205-215.

Bernsen, N.O. 2003, "On-line user modeling in a mobile spoken dialogue system". 8
th

European Conference on Speech Communication and Technology, EuroSpeech 2003, 1-

4 September 2003 Geneva, Switzerland. Pp. 737-740.

Bernsen, N.O., Dybkjaer, H. & Dybkjaer, L. 1998. "Designing Interactive Speech

Systems: From First Ideas to User Testing”. New York, United States of America:

Springer-Verlag.

Beveridge, M. & Milward, D. 2003, "Combining Task Descriptions and Ontological

Knowledge for Adaptive Dialogue". 6
th

 International Conference on Text, Speech and

Dialogue, 8-12 September, Czech Republic. Pp. 341.

Black, L.-A., McTear, M., Black, N., Harper, R. & Lemon, M. 2005. "Evaluating the

DI@l-log system on a cohort of elderly, diabetic patients: results from a preliminary

study”. 9th European Conference on Speech Communication and Technology,

InterSpeech 2005, 4-8 September 2005 Lisbon, Portugal. Pp. 821-824.

 245

Craig Wootton, University of Ulster

Bohus, D. & Rudnicky, A.I. 2003. "RavenClaw: Dialog Management Using

Hierarchical Task Decomposition and an Expectation Agenda". 8
th

 European

Conference on Speech Communication and Technology, EuroSpeech 2003, 1-4

September 2003 Geneva, Switzerland. Pp. 597-600.

Bohus, D. & Rudnicky, A.I. 2005a, "Error handling in the RavenClaw dialog

management framework”. In proceedings of Human Language Technology Conference

and Conference on Empirical Methods in Natural Language Processing, 6-8 October

2005 Vancouver, Canada. Pp. 225-232.

Bohus, D. & Rudnicky, A. I.2005b, "A principled approach for rejection threshold

optimization in spoken dialog systems". 9th European Conference on Speech

Communication and Technology, InterSpeech 2005, 4-8 September 2005 Lisbon,

Portugal. Pp. 2781-2784.

Bohus, D. & Rudnicky, A.I. 2005c. "Sorry, I didn‟t catch that! -An Investigation of

Non-Understanding Errors and Recovery Strategies", 6th SIGdial Workshop on

Discourse and Dialogue. 2-3 September 2005 Lisbon, Portugal. Pp. 128-143.

Bohus, D., Puerto, S.G., Huggins-Daines, D., Keri, V., Krishna, G., Kumar, R., Raux,

A. & Tomko, S. 2007. "Conquest–An Open-Source Dialog System for Conferences".

Proceedings of Human Language Technologies: The Annual Conference of the North

American Chapter of the Association for Computational Linguistics, 22-27 April 2007

Rochester, NY.

Bollegala, D., Matsuo, Y. & Ishizuka, M. 2007. “An Integrated Approach to Measuring

Semantic Similarity between Words using Information Available on the Web”.

Proceedings of Human Language Technologies: The Annual Conference of the North

American Chapter of the Association for Computational Linguistics, 22-27 April 2007

Rochester, NY. Pp. 340-347.

Bollegala, D., Matsuo, Y. & Ishizuka, M. 2007, “Measuring Semantic Similarity

between Words using Web Search Engines”, 16th International World Wide Web

Conference, 8-12 May 2007 Alberta, Canada. Pp. 757-766.

Boyer, L., Danielsen, P., Ferrans, J., Karam, G., Ladd, D., Lucas, B. & Rehor, K. 2000.

Voice eXtensible Markup Language (VoiceXML
™

) version 1.0. Available from:

http://www.w3.org/TR/voicexml/ [Accessed 18
th

 July 2006].

Bray, T., Paoli, J. & Sperberg-McQueen, C.M. 1998. Extensible Markup Language

(XML) 1.0. Available from: http://www.w3.org/TR/1998/REC-xml-19980210

[Accessed 17th July 2006].

Bronsted, T., Larsen, H.L., Larsen, L.B., Lindberg, B., Ortiz-Arroyo, D., Tan, Z.-. &

Xu, H. 2005. "Mobile information access with spoken query answering". Applied

 246

Craig Wootton, University of Ulster

Spoken Language Interaction in Distributed Environments, 10-11 November 2005

Aalborg, Denmark. Paper 31.

Brusilovsky, P. & Tasso, C.E.R. 2004. "Preface to Special Issue on User Modeling for

Web Information Retrieval", User Modeling and User-Adapted Interaction, vol. 14, no.

2-3, pp. 147-157.

Bühler, D., Minker, W., Haussler, J. & Kruger, S. 2002. "The SmartKom mobile multi-

modal dialogue system". Proceedings of ISCA Tutorial and Research Workshop on

Multimodal Dialogue in Mobile Environment, 17-19 June 2002 Kloster Irsee, Germany.

Pp. 11.

Callejas, Z. & López-Cózar, R. 2005. "Implementing modular dialogue systems: a case

of study”. Applied Spoken Language Interaction in Distributed Environments, 10-11

November 2005 Aalborg, Denmark. Paper 13.

Callejas, Z. & López-Cózar, R. 2008. “Relations between de-facto criteria in the

evaluation of a spoken dialogue system”. Speech Communication, vol. 50, no. 8-9, pp.

646-665.

Capra III, R.G., Pérez-Quiñones, M.A. & Ramakrishnan, N. 2001. "WebContext:

Remote Access to Shared Context". Proceedings of Perceptive User Interfaces 2001,

15-16 November 2001 Orlando, Fl. Pp. 1-9.

Capra III, R.G. 2003. "Mobile information re-finding as a continuing dialogue".

Proceedings of Human Factors in Computing Systems, 5
-10

April 2003 Ft. Lauderdale

Florida, Pp. 664.

Capra III, R.G. & Pérez-Quiñones, M.A. 2005, "Mobile re-finding of web information

using a voice interface: an exploratory study”, Proceedings of the Latin American

Conference on Human-computer Interaction 2005, 23-26 October 2005 Cuernavaca,

Mexico. Pp. 88-99

Carenini, G. & Moore, J. 2001. "A strategy for evaluating generative arguments". 1
st

International Conference on Natural Language Generation, San Diego, CA. Pp. 1307–

1314.

Carlson, R., Hirschberg, J. & Swerts, M. 2005, "Error handling in spoken dialogue

systems", Speech Communication, vol. 45, no. 3, pp. 207-209.

Chen, B., Chen, Y., Chang, C. & Chen, H. 2005, "Speech retrieval of Mandarin

broadcast news via mobile devices". 9th European Conference on Speech

Communication and Technology, InterSpeech 2005, 4-8 September 2005 Lisbon,

Portugal. Pp. 109-112.

Choi, O., Han, S., Abraham, A. 2005. “Integration of Semantic Data using a Novel Web

Based Information Query System”. International Journal of Web Services Practices,

vol. 1, no. 1-2, pp. 21-29.

 247

Craig Wootton, University of Ulster

Chu, S.W., O'Neill, I., Hanna, P. & McTear, M. 2005, "An approach to multi-strategy

dialgoue management". 9th European Conference on Speech Communication and

Technology, InterSpeech 2005, 4-8 September 2005 Lisbon, Portugal. Pp. 865-868.

Chu-Carroll, J. 2000. "MIMIC: An adaptive mixed initiative spoken dialogue system for

information queries". 6th Conference on Applied Natural Language Processing, 29

April-4 May 2000 Seattle WA. Pp. 97–104.

Chu-Carroll, J., & Carpenter, B. 1999. “Vector-Based Natural Language Call Routing”.

Computational Linguistics, vol. 25, pp. 361-388.

Churcher, G.E., Atwell, E.S. & Souter, C. 1997. "Dialogue management systems: a

survey and overview". School of Computer Studies, University of Leeds, UK.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. & Sartin, M. 1999.

"Combining content-based and collaborative filters in an online newspaper". ACM

SIGIR Workshop on Recommender Systems: Algorithms and Evaluation, 19 August

1999 University of California, USA.

Clark, H.H. 1996. “Using Language”. UK: Cambridge University Press.

D‟Haro, L.F., de Córdoba, R., Ferreiros, J., Hamerich, S.W., Schless, V., Kladis, B.,

Schubert, V., Kocsis, O., Igel, S. & Pardo, J.M. 2006. "An advanced platform to speed

up the design of multilingual dialog applications for multiple modalities". Speech

Communication, vol. 48, no. 8, pp. 863-887.

den Os, E., Boves, L., Rossignol, S., ten Bosch, L. & Vuurpijl, L. 2005, "Conversational

agent or direct manipulation in human–system interaction", Speech Communication,

vol. 47, no. 1-2, pp. 194-207.

Dybkjaer, L. & Bernsen, N.O. 2001, "Usability issues in spoken dialogue systems",

Natural Language Engineering, vol. 6, no. 3-4, pp. 243-271.

Dybkjær, L., Bernsen, N. O., Dybkjær, H., 2005. "Usability evaluation issues in

commercial and research systems". Applied Spoken Language Interaction in Distributed

Environments, 10-11 November 2005 Aalborg, Denmark. Paper 29.

Feng, J., Bangalore, S. & Rahim, M. 2003. "WebTalk: mining Websites for

automatically building dialog systems". Automatic Speech Recognition and

Understanding, 30 November-3 December 2003, U.S. Virgin Islands, UDS. Pp. 168

Feng, J., Bangalore, S., Rahim, M. 2004. “Question-Answering in WebTalk: An

Evaluation Study”. 8th International Conference on Speech Language Processing,

InterSpeech 2004, 4-8 October 2004 Jeju Islands, Korea. Pp. 2613-2626

Feng, J., Reddy, S. & Saraclar, M. 2005. "WebTalk: Mining Websites for Interactively

Answering Questions". 9th European Conference on Speech Communication and

Technology, InterSpeech 2005, 4-8 September 2005 Lisbon, Portugal. P2485-2488.

 248

Craig Wootton, University of Ulster

Feng, J., Hakkani-Tur, D., Di Fabbrizio, G., Gilbert, M. & Beutnagel, M. 2006.

"WebTalk: Towards Automatically Building Spoken Dialog Systems Through Mining

Websites". 31
st
 Conference on Acoustics, Speech and Signal Processing, 14-19 May

2006 Toulouse, France. Pp. 573-576.

Fensel, D. 2003. “Spinning the Semantic Web: Bringing the World Wide Web to Its Full

Potential”. USA: MIT Press.

Fischer, G.E.R. 2001. "User Modeling in Human-Computer Interaction". User

Modeling and User-Adapted Interaction, vol. 11, no. 1 - 2, pp. 65-86.

Fischer, P., Österle, A., Berton, A. & Regel-Brietzmann, P. 2007, "How to personalize

speech applications for web-based information in a car”. 10
th

 European Conference on

Speech Communication and Technology, InterSpeech 2007, 27-31 August 2005

Antwerp, Belgium. Pp. 2557-2560.

Fitzgerald, M. 2004. “Learning XSLT”. 1st ed, USA: O'Reilly & Associates, Inc. Pp. ix.

 Froumentin , M. & Ashimura, A. 2006. “W3C "Voice Browser" Activity”. Available

from: http://www.w3.org/Voice/ [Accessed 14
th

 July 2006]

Ganesan, P., Garcia-Molina, H., Widom, J. 2003. “ Exploiting Hierarchical Domain

Structure to Compute Similarity”. ACM Transactions on Information Systems, vol. 21,

pp. 64-93.

Garcia, E. 2006. “The Classic Vector Space Model - Description, Advantages and

Limitations of the Classic Vector Space Model”. Available from:

http://www.miislita.com/term-vector/term-vector-3.html [Accessed 5th February 2007].

Giorgino, T., Azzini, I., Rognoni, C., Quaglini, S., Stefanelli, M., Gretter, R. &

Falavigna, D. 2005. "Automated spoken dialogue system for hypertensive patient home

management". International Journal of Medical Informatic., vol. 74, no. 2-4, pp. 159-

167.

Göker, M.H. & Thompson, C.A. 2000. "The Adaptive Place Advisor: A Conversational

Recommendation System". 8th German Workshop on Case-Based Reasoning, 2-3

March 2000 Lamerbuckel, Germany.

González-Ferreras, C. & Cardenoso-Payo, V. 2005, "Development and evaluation of a

spoken dialog system to access a newspaper web site", 9th European Conference on

Speech Communication and Technology, InterSpeech 2005, 4-8 September 2005

Lisbon, Portugal. Pp. 857-860.

Griol, D., Hurtado, L.F., Segarra, E., Sanchis, E. & i Computacio, D.S.I. 2008. "A Two

Phases Statistical Approach for Dialog Management". Perception in Multimodal

Dialogue Systems: 4th IEEE Tutorial and Research Workshop on Perception and

Interactive Technologies for Speech-Based Systems, 16-18 June 2008 Kloster Irsee,

Germany.

 249

Craig Wootton, University of Ulster

 Gruenstein, A., Seneff, S. & Wang, C. 2006, "Scalable and portable web-based

multimodal dialogue interaction with geographical databases”. 9th International

Conference on Speech Language Processing, InterSpeech 2006, 17-21 September 2006

Pittsburgh, PA. Paper 1095.

Haller, R. 2003. "The Display and Control Concept iDrive-Quick Access to All Driving

and Comfort Functions". In ATZ/MTZ Extra (The New BMW 5-Series), August 2003.

Pp. 51–53.

Hamerich, S.W., Schubert, V., Schless, V., de Córdoba, R., Pardo, J.M., d'Haro, L.F.,

Kladis, B., Kocsis, O. & Igel, S. 2004a. "The GEMINI platform: Semi-Automatic

generation of dialgoue applications". 8th International Conference on Speech Language

Processing, InterSpeech 2004, 4-8 October 2004 Jeju Islands, Korea. Pp. 2629-2632.

Hamerich, S.W., Schubert, V., Schless, V., de Córdoba, R., Pardo, J.M., d'Haro, L.F.,

Kladis, B., Kocsis, O. & Igel, S. 2004b/ "Semi-automatic generation of dialogue

applications in the GEMINI project". 5th SIGdial Workshop on Discourse and

Dialogue, 1 May--30 April 2004 Boston, MA. Pp. 31-31.

Hamerich, S.W., Wang, Y.H., Schubert, V., Schless, V. & Igel, S. 2003. "XML-Based

dialogue descriptions in the GEMINI project". Proceedings of the Berliner XML-Tage,

13-15 October 2003 Berlin, Germany. Pp. 404-412

Hanna, P., O'Neill, I., & Liu X. & McTear, M. 2005. "Developing extensible and

reusable spoken dialogue components: an examination of the Queen's communicator".

9th European Conference on Speech Communication and Technology, InterSpeech

2005, 4-8 September 2005 Lisbon, Portugal. pp. 1865-1868.

Hanna, P., O'Neill, I., Wootton, C. & McTear, M. 2007. "Promoting extension and reuse

in a spoken dialog manager: An evaluation of the Queen's Communicator”. ACM

Transactions on Speech and Language Processing), vol. 4, no. 3, article 7.

Hardy, H., Baker, K., Bonneau-Maynard, H., Devillers, L., Rosset, S. & Strzalkowski,

T. 2003. "Semantic and Dialogic Annotation for Automated Multilingual Customer

Service". 8
th

 European Conference on Speech Communication and Technology,

EuroSpeech 2003, 1-4 September 2003 Geneva, Switzerland. pp. 201-204.

Hardy, H., Biermann, A., Inouye, R.B., McKenzie, A., Strzalkowski, T., Ursu, C.

Webb, N. & Wu, M. 2006. "The AMITIÉS system: Data-driven techniques for

automated dialogue". Speech Communication, vol. 48, no. 3-4, pp. 354-373.

Hartikainen, M., Salonen, E.P. & Turunen, M. 2004. "Subjective Evaluation of spoken

dialogue systems Using SER VQUAL Method". 8
th

 International Conference on Spoken

Language Processing, 4-8 October 2004 Jeju, Korea. Pp. 2273-2273.

Hassel, L. & Hagen, E. 2005, "Adaptation of an automotive dialogue system to user's

expertise", 6th SIGdial Workshop on Discourse and Dialogue, 2-3 September 2005

Lisbon, Portugal. Pp. 222-226

 250

Craig Wootton, University of Ulster

He, Y. & Young, S. 2006. "Spoken language understanding using the Hidden Vector

State Model". Speech Communication, vol. 48, no. 3-4, pp. 262-275.

Hjalmarsson, A. 2005. "Towards user modelling in conversational dialgoue systems: A

qualitative study of the dynamics of dialgoue parameters". 9th European Conference on

Speech Communication and Technology, InterSpeech 2005, 4-8 September 2005

Lisbon, Portugal. Pp. 869-872.

Hocek, A. & Cuddihy, D. 2003. “Definitive VoiceXML”. 1st ed. New Jersey, USA:

Pearson Education, Inc.

Hone, K.S. & Graham, R. 2000. "Towards a tool for the Subjective Assessment of

Speech System Interfaces (SASSI)". Natural Language Engineering, vol. 6, no. 3-4, pp.

287-303.

Hone, K.S. & Graham, R. 2001. "Subjective Assessment of Speech-System Interface

Usability". 7
th

 European Conference on Speech Communication and Technology,

Eurospeech 2001, 3-7 September 2001 Aalborg, Denmark. Pp. 2082-2086.

Huang, X., Acero, A. & Hsiao-Wuen, H. 2001. “Spoken language processing. A guide

to theory, algorithm and system development”. New Jersey, USA: Prentice Hall PTR.

ISO 9241-11, 1998. “Ergonomic requirements for office work with visual display

terminals (VDT)s – Part 11 Guidance on usability”. Available from:

http://www.miislita.com/term-vector/term-vector-3.html [Accessed 5th February 2007].

Jokinen, K., Kerminen, A., Kaipainen, M., Jauhiainen, T., Wilcock, G., Turunen, M.,

Hakulinen, J., Kuusisto, J. & Lagus, K. 2002. "Adaptive dialogue systems-interaction

with interact". 3
rd

 SIGdial Workshop on Discourse and Dialogue, 11-12 July 2002

Philadelphia, PA. Pp. 64-73.

Jung, S., Lee, C., Kim, S. & Lee, G.G. 2008, "DialogStudio: A workbench for data-

driven spoken dialog system development and management", Speech Communication,

vol. 50, no. 8-9, pp. 697-715.

Jurafsky, D. & Martin, J.H. 2008. “Speech and language processing. An introduction

to natural language processing, computational linguistics and speech recognition”. 2
nd

ed. New Jersey, USA: Prentice-Hall Inc.

Kamm, C., Walker, M.A. & Litman, D. 1999. "Evaluating Spoken Language Systems",

Proceedings of AVIOS 1994, 20-23 September 2004 San Jose, CA.

Kohrs, A. & Merialdo, B. 2000. "Using category-based collaborative filtering in the

ActiveWebMuseum". IEEE International Conference on Multimedia and Expo, 2

August-30 July 2000. Pp. 351-354.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-3Y9RCX5-B&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a3a3594714ca44aac30ca82c8a9d518e#bb1

 251

Craig Wootton, University of Ulster

Komatani, K., Adachi, F., Shinichi, U., Kawahara, T. & Okuno, H.G. 2003. "Flexible

spoken dialogue system based on user models and dynamic generation of VoiceXML

scripts". 4
th

 SIGdial Workshop on Discourse and Dialogue, 5-6 July 2003 Sapporo,

Japan.

Komatani, K., Ueno, S., Kawahara, T. & Okuno, H.G. 2005. "User Modeling in spoken

dialogue systems to Generate Flexible Guidance". User Modeling and User-Adapted

Interaction, vol. 15, no. 1, pp. 169.

Kobayashi, M. & Takeda, K. 2000. "Information retrieval on the web". ACM

Computing Surveys, vol. 32, no. 2, pp. 144-173.

Kraemer, H.C. & Thiemann, S. 1987. “How many subjects?”. California, USA: Sage

Publications.

Lamel, L., Rosset, S. & Gauvain, J.L. 2000. "Considerations in the Design and

Evaluation of Spoken Language Dialog Systems". 6
th

 International Conference on

Spoken Language Processing, 16-20 October 2000 Beijing, China. Pp. 5-8.

Larson, J.A. 2003. “VoiceXML: Introduction to developing speech applications”. 1st

ed. New Jersey, USA: Pearson Education, Inc.

Larson, J.A. 2005a. "VoiceXML: Industry perspectives and business opportunities".

Applied Spoken Language Interaction in Distributed Environments, 10-11 November

2005 Aalborg, Denmark. Paper 43.

Larson, J.A. 2005b. “Voice User Interface Design for Novice and Experienced Users”.

In “Practical Spoken Dialogue Systems. Text, Speech and Language Technology”.

Kluwer Academic Publishers: USA. Page 61.

Larson, J.A. et al. 2005. “Ten Criteria for Measuring Effective Voice User Interfaces”.

Speech Technology Magazine, vol 10, num 6, issue 545, pp. 31-35.

Lee, C., Jung, S., Jeong, M. & Lee, G.G. 2006. "Chat and goal-oriented dialog together:

a unified example-based architecture for multi-domain dialog management". 1
st

Workshop on Spoken Language Technology, 10-13 December 2006 palm Beach, Aruba.

pp. 194-197.

Leighton, H.V. & Srivastava, J. 1999. "First 20 precision among World Wide Web

search services (search engines)". Journal of the American Society for Information

Science, vol. 50, no. 10, pp. 870-881.

Lemon, O., Georgila, K., Henderson, J. & Stuttle, M. 2006. "An ISU dialogue system

exhibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK

in-car system". 11
th

 Conference of the European Chapter of the Association for

Computer Linguistics, 3-7 April 2006 Trento, Italy.

 252

Craig Wootton, University of Ulster

Litman, D., Singh, S., Kearns, M. & Walker, M. 2000. "NJFun: A Reinforcement

Learning spoken dialogue system". ANLP/NAACL Workshop on Conversational

Systems, 4 May 2000 Seattle, WA. Pp. 17-20.

Litman, D.J., Walker, M.A. & Kearns, M.S. 1999, "Automatic detection of poor speech

recognition at the dialogue level", 37th Annual Meeting of the Association for

Computational Linguistics on Computational Linguistics, 20-26 June 1999 College

Park, Maryland. Pp. 309-316.

López-Cózar, R. & Araki, M. 2005. Spoken, multilingual and multimodal dialogue

systems. Development and Assessment”. West Sussex, England: John Wiley & Sons

Ltd.

López-Cózar, R., Callejas, Z., Gea, M. & Montoro, G. 2005. "Multimodal, multilingual

and adaptive dialogue system for ubiquitous interaction in an educational space".

Applied Spoken Language Interaction in Distributed Environments, 10-11 November

2005 Aalborg, Denmark. Paper 12.

McTear, M.F. 2004a. "Spoken dialogue technology. Towards the conversational user

interface". London, United Kingdom: in Springer-Verlag.

McTear, M. 2004b. "New Directions in Spoken Dialogue Technology for Pervasive

Interfaces". Workshop on Robust and Adaptive Information Processing for Mobile

Speech Interfaces, Satellite Workshop of 20
th

 International Conference of Computer

Linguistics, 28-29 August 2004 Geneva, Switzerland. Pp. 57-64.

McTear, M., O'Neill, I., Hanna, P. & Liu, X. 2005. "Handling errors and determining

confirmation strategies-An object-based approach". Speech Communication, vol. 45, no.

3, pp. 249-269.

Miller, M. 2002. “VoiceXML: 10 Projects to voice-enable your web site”. 1st ed. New

York, USA: Wiley Publishing, Inc.

Milward, D. & Beveridge, M. 2003. "Ontology-based dialogue systems". 3
rd

 Workshop

on Knowledge and Reasoning in Practical Dialogue Systems, 10 August 2003 Acapulco,

Mexico.

Mittendorfer, M., Niklfeld, G. & Winiwarter, W. 2002. "Making the VoiceWeb

Smarter–Integrating Intelligent Component Technologies and VoiceXML". 2nd

International Conference on Web Information Systems Engineering, 3-6 December

2001 Kyoto, Japan. Pp. 126.

Möller, S. 2005a. ”Evaluating Telephone-Based Interactive Systems”. Applied Spoken

Language Interaction in Distributed Environments, 10-11 November 2005 Aalborg,

Denmark. Paper 42.

Möller, S. 2005b. "Quality of Telephone-Based spoken dialogue systems". Boston,

USA: Springer. Pp. 27.

 253

Craig Wootton, University of Ulster

Möller, S., Englert, R., Engelbrecht, K., Hafner, V., Jameson, A., Oulasvirta, A., Raake,

A. & Reithinger, N. 2006. "Memo: towards automatic usability evaluation of spoken

dialogue services by user error simulations". 9th International Conference on Speech

Language Processing, InterSpeech 2006, 17-21 September 2006 Pittsburgh, PA. Paper

1131.

Möller, S., Smeele, P., Boland, H. & Krebber, J. 2007. "Evaluating spoken dialogue

systems according to de-facto standards: A case study". Computer Speech & Language,

vol. 21, no. 1, pp. 26-53.

Möller, S., Engelbrecht, K. & Schleicher, R. 2008. "Predicting the quality and usability

of spoken dialogue services". Speech Communication, vol. 50, no. 8-9, pp. 730-744.

Montoro, G., Alamán, X. & Haya, P.A. 2004. "A plug and play spoken dialogue

interface for smart environments". 5
th

 International Conference on Intelligent Text

Processing and Computational Linguistics, 15-21 February 2004 Seoul, Korea. Pp.

355-365.

Morrison, M. 2002. "Sams teach yourself XML in 24 hours”. 2
nd

 ed. USA: Sams

publishing. Pp. 8-9.

Mueller, W., Schaefer, R. & Bleul, S. 2004. "Interactive multimodal user interfaces for

mobile devices". 37th Annual Hawaii International Conference on System Sciences, 5-

8 January 2004 Hawaii. Pp. 286-295.

Nielsen, J. 1993. "Usability Engineering". London, United Kingdom: Academic Press

Limited. Pp. 26.

Nielsen, J. & Landauer, T.K., 1993. “A mathematical model of the finding of usability

problems”. International Conference on Human-Computer Interaction, 24-29 April

2004 Amsterdam, Netherlands. Pp. 206-213.

Ng, C., Wilkinson, R., Zobel, J. 2000. “Experiments in Spoken Document Retrieval

using Phoneme n-Grams”. Speech Communication, vol. 32, pp. 61-77

O‟ Neill, I., Hanna, P., Liu, X., Greer, D. & McTear, M. 2005. "Implementing advanced

spoken dialogue management in Java". Science of Computer Programming, vol. 54, no.

1, pp. 99-124.

Paek, T. 2001., "Empirical methods for evaluating dialog systems". 2
nd

 SIGdial

Workshop on Discourse and Dialogue, 1-2 September 2001 Aalborg, Denmark. Pp. 3-

10.

Pargellis, A., Kuo, H.K.J. & Lee, C.H. 1999. "Automatic application generator matches

user expectations to system capabilities". ESCA Workshop on Interactive Dialogue in

Multi-Modal Systems, 22-25 June 199 Kloster Irsee, Germany. Pp. 37–40.

 254

Craig Wootton, University of Ulster

Pargellis, A.N., Kuo, H.-.J. & Lee, C.-. 2004. "An automatic dialogue generation

platform for personalized dialogue applications". Speech Communication, vol. 42, no. 3-

4, pp. 329-351.

Paris, C.L. 1993. “User Modeling in Text Generation”. New York, USA: St. Martin's

Press, Inc.

Pellom, B., Ward, W., Hansen, J., Cole, R., Hacioglu, K., Zhang, J., Yu, X. & Pradhan,

S. 2001. "University of Colorado Dialog Systems for Travel and Navigation”. 1
st

International Conference on Human Language Technology Research, March 2001 San

Diego CA. Pp. 1-6.

Pellom, B., Ward, W. & Pradhan, S. 2000. "The CU Communicator: An Architecture

for Dialogue Systems". 6
th

 International Conference on Spoken Language Processing,

16-20 October 2000 Beijing, China. Pp. 723–726.

Perez-Quiñones, M. A.& Rode, J. 2004. “You've Got Mail! Calendar, Weather and

More: Customizable Phone Access to Personal Information”. USA: Virginia Tech,

Technical Report TR-04-21.

Pieraccini, R. & Huerta, J. 2005. "Where do we go from here? Research and

Commercial Spoken Dialog Systems”. 6th SIGdial Workshop on Discourse and

Dialogue, 2-3 September 2005 Lisbon, Portugal. Pp. 1-10.

Platt, G.T. 2004. "VoiceXML versus salt: selecting a voice application standard".

Customer Interaction Solutions, vol. 22, no. 11, pp. 50.

Polifroni, J., Chung, G. & Seneff, S. 2003. "Towards the automatic generation of

mixed-initiative dialogue systems from web content". 8
th

 European Conference on

Speech Communication and Technology, EuroSpeech 2003, 1-4 September 2003

Geneva, Switzerland. Pp. 193-196.

Polifroni, J. & Walker, M. 2006. "An Analysis Of Automatic Content Selection

Algorithms For spoken dialogue system Summaries", 1
st
 Workshop on Spoken

Language Technology, 10-13 December 2006 Palm Beach, Aruba. Pp. 186-189.

Popescul, A., Ungar, L.H., Pennock, D.M. & Lawrence, S. 2001. "Probabilistic models

for unified collaborative and content-based recommendation in sparse-data

environments". 17
th

 Conference in Uncertainty in Artificial Intelligence, 2-5 August

2001 Seattle WA. Pp. 437-444.

Rabiner, L. & Juang, B.H. 1993. “Fundamentals of Speech Recognition”. New Jersey,

USA: Prentice-Hall, Inc.

Raman, T.V. 1998. “Audio System for Technical Readings” Berlin: Springer.

Raman, T.V. 1997a. "Auditory User Interfaces: Toward the Speaking Computer".

Norwell, USA: Kluwer Academic Publishers. Pp. 121.

 255

Craig Wootton, University of Ulster

Raman, T.V. 1997b. “Aural cascaded style sheets – the audible www”. 6
th

 International

World Wide Web Conference, 7-11 April 1997 Santa Clara, CA.

Raux, A., Langner, B., Bohus, D., Black, A. W. & Eskenazi, M. 2003. "LET's GO:

improving spoken dialog systems for the elderly and non-natives". 8
th

 European

Conference on Speech Communication and Technology, EuroSpeech 2003, 1-4

September 2003 Geneva, Switzerland. Pp.753-756.

Raux, A., Langner, B., Bohus, D., Black, A. W. & Eskenazi, M. 2005. "Let's go public!

taking a spoken dialog system to the real world". 9th European Conference on Speech

Communication and Technology, InterSpeech 2005, 4-8 September 2005 Lisbon,

Portugal. Pp. 885-888.

Raux, A., Bohus, D., Langner, B., Black, A. & Eskenazi, M. 2006. “Doing Research on

a Deployed spoken dialogue system: One Year of Let's Go! Experience”. 9th

International Conference on Speech Language Processing, InterSpeech 2006, 17-21

September 2006 Pittsburgh, PA. Paper 1794.

Reithinger, N., Herzog, G. & Blocher, A. 2007. "SmartWeb-Mobile Broadband Access

to the Semantic Web". KI-Künstliche Intelligenz, vol. 07, no. 2, pp. 30-33.

Richardson, R., & Smeaton, A. F. 1995, “Using WordNet in a Knowledge-Based

Approach to Information Retrieval”. 17
th

 BCS-IRSG Annual Colloquium, 4-5 April

1995 Crewe, UK. .

Ringland, S. P. A. & Scahill, F.J. 2003. "Multimodality - The Future of the Wireless

User Interface”. BT Technology Journal, vol. 21, no. 3, pp. 181-191.

Rosset, S., Galibert, O., Illouz, G. & Max, A. 2006. "Integrating Spoken Dialog and

Question Answering: the Ritel Project". 9th International Conference on Speech

Language Processing, InterSpeech 2006, 17-21 September 2006 Pittsburgh, PA. Paper

1529.

Schubert, V. & Hamerich, S.W. 2005. "The dialogue application metalanguage

GDialogXML". 9th European Conference on Speech Communication and Technology,

InterSpeech 2005, 4-8 September 2005 Lisbon, Portugal. Pp. 789-792

Sharma, C. & Kunis, J. 2002. “VoiceXML. Strategies and techniques for effective voice

application development with VoiceXML 2.0”. New York, USA: John Wiley & Sons,

Inc.

Sieg, A., Mobasher, B. & Lytinen, S. 2004. “Using Concept Hierarchies to Enhance

User Queries in Web-Based Information Retrieval”. International Conference on

Artificial Intelligence and Applications, 14-16 February 2004 Innsbruck, Austria. Pp.

226–234

Sieg, A., Mobasher, B. & Lytinen, S. 2006. “ Concept Based Query Enhancement in the

Arch Search Agent”. 4th International Conference on Internet Computing, 26-29 June

2006 Las Vegas, NV.

 256

Craig Wootton, University of Ulster

Singh, S.P., Litman, D.J., Kearns, M.J. & Walker, M.A. 2002. "Optimizing Dialogue

Management with Reinforcement Learning: Experiments with the NJFun System".

Journal of Artificial Intelligence Research, vol. 16, no. 5, pp. 105-133.

Skantze, G. 2005. "Exploring human error recovery strategies: Implications for spoken

dialogue systems". Speech Communication, vol. 45, no. 3, pp. 325-341.

Sturm, J. & Boves, L. 2005. "Effective error recovery strategies for multimodal form-

filling applications". Speech Communication, vol. 45, no. 3, pp. 289-303.

Suhm, B. 2000, "Lessons learned for visual and verbal Interfaces from multimodal

error correction". W3C/WAP Workshop: the Multimodal Web, 5-6 September 2000,

Hong Kong.

Suhm, B., Myers, B. & Waibel, A. 2001. "Multimodal error correction for speech user

interfaces". ACM Transactions on Computer-Human Interaction (TOCHI), vol. 8, no. 1,

pp. 60-98.

Taylor, M.M., Néel, F. & Bouwhuis, D.G. 1989. “The structure of multimodal

dialogue”. Amsterdam, The Netherlands: Elsevier Science Publishers

Thompson, C.A., Goker, M.H. & Langley, P. 2004. "A Personalized System for

Conversational Recommendations". Journal of Artificial Intelligence Research, vol. 21,

pp. 393-428.

Thompson, H. & le Hegaret, P. 2005. “XML Core Working Group Public Page.”

Available from: http://www.w3.org/XML/Core/ [Accessed 17
th

 August 2006] .

Traum, D.R. & Allen, J.F. 1992. “A speech acts approach to grounding in

conversation”. 2nd International Conference on Spoken Language Processing, 13-16

October 1992 Alberta, Canada. Pp. 137-140.

Turunen, M. 2004. “Jaspis–A Spoken Dialogue Architecture and its Applications”.

Thesis (PhD). University of Tampere, Finland.

Turunen, M., Hakulinen, J., Raiha, K.-., Salonen, E.-., Kainulainen, A. & Prusi, P. 2004.

"An architecture and applications for speech-based accessibility systems". IBM Systems

Journal, vol. 44, no. 3, pp. 485-504.

Turunen, M., Salonen, E., Hakulinen, J., Kanner, J. & Kainulainen, A. 2005, "Mobile

architecture for distributed multimodal dialogues". 9th European Conference on Speech

Communication and Technology, InterSpeech 2005, 4-8 September 2005 Lisbon,

Portugal. Pp. 849-852.

Veldhuijzen van Zanten, G. 1998. "Adaptive mixed-initiative dialogue management".

4
th

 IEEE Workshop on Interactive Voice Technology for Telecommunications

Applications, 29-30 September 1998 Torino, Italy. Pp. 65-70.

 257

Craig Wootton, University of Ulster

Veldhuijzen van Zanten, G. 1999. "User modeling in adaptive dialogue management".

6
th

 European Conference on Speech Communication and Technology, 5-9 September

1999 Budapest, Hungary. Pp. 1183-1186.

Virzi, R.A. 1992. “Refining the test phase of usability evaluation: How many subjects is

enough?”. Human Factors, vol. 34, pp. 457-468.

Wærn, A.C.M. 2004. "User Involvement in Automatic Filtering: An Experimental

Study". User Modeling and User-Adapted Interaction, vol. 14, no. 2, pp. 201-237.

Wahlster, W. & Kobsa, A. 1989, "User Models in Dialog Systems". New York, USA:

Springer-Verlag. Pp. 4–24.

Waibel, A. & Lee, K.-. 1990. "Problems and opportunities”. In Readings in Speech

Recognition., edited by. A. Waibel & K.-. Lee. California, USA: Morgan Kaufmann

Publishers, Inc. Pp. 7.

Walker, M.A., Litman, D.J., Kamm, C.A. & Abella, A., 1997. “PARADISE: a

framework for evaluating spoken dialogue agents.” 35
th

 Annual Meeting of the

Association for Computer Linguistics, 7-12 July 1997 Madrid, Spain. Pp. 271–280.

Walker, M. A., Litman, D. J., Kamm, C. A. & Abella, A., 1998. “Evaluating spoken

dialogue agents with PARADISE: Two case studies”. Computer Speech and Language,

vol. 12, pp. 317-347.

Weinschenk, S. & Barker, D.T. 2000. "Designing effective speech interfaces". New

York, USA: John Wiley & Sons, Inc. Pp. 187.

Witten, I. H., Moffat, A. & Bell, T. C. 1999. “Overview. In Managing Gigabytes -

Compressing and Indexing Documents and Images”. 2
nd

 ed. San Francisco, USA:

Morgan Kaufmann Publishers.

Wittenbrink, H. 2005. “RSS and ATOM: Understanding and implementing content feeds

and syndication”. 1
st
 ed. USA: Packt Publishing. Chapter 1.

Zhong, Y. & Gilbert, J. E. 2005, “A Context-Aware Language Model for Spoken Query

Retrieval”. International Journal of Speech Technology, vol. 8, no. 2, pp. 203-219.

Zirkle, P. 2003. “Introduction to APIs and the event loop”. Available from:

http://www.skyesurfer.net/keless/vgp/assignment1.htm [Accessed 18th September

2006]

 258

Craig Wootton, University of Ulster

Appendix A: Publications

Hanna, P., O'Neill, I., Wootton, C. & McTear, M. 2007. "Promoting extension and reuse

in a spoken dialog manager: An evaluation of the Queen's Communicator”. ACM

Transactions on Speech and Language Processing, vol. 4, no. 3.

Wootton, C., McTear, M. & Anderson, T. 2007. "Utilizing online content as domain

knowledge in a multi-domain dynamic dialogue system". 10
th

 European Conference on

Speech Communication and Technology, InterSpeech 2007, 27-31 August 2005

Antwerp, Belgium. Pp. 122-125.

259

Craig Wootton, University of Ulster

Appendix B: Evaluation Material

Evaluation Design

System 1

(16)

System2

(16)

Experienced

(8)

Inexperienced

(8)

Experienced

(8)

Inexperienced

(8)

Old

(4)

Young

(4)

Old

(4)

Young

(4)

Old

(4)

Young

(4)

Old

(4)

Young

(4)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Male

(2)

Female

(2)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

Sc

1

Sc

2

(1)

Sc

2

Sc

1

(1)

 260

Craig Wootton, University of Ulster

Evaluation Schedule

Below is the schedule for a participant evaluation of VoiceBrowse. The evaluation will

be carried out using a headset, although the computer will not be facing the participant

so that they have no visual reference, mimicking real world usage.

Time Activity

0 – 15 minutes Introduction and consent forms

Initial questionnaire

Demonstration of VoiceBrowse by session leader

15 – 30 minutes Scenario 1 (6 tasks)

30 – 50 minutes Questionnaire 1

50 – 80 minutes 30 minutes free VoiceBrowsing. This is to simulate usage over

time, improving the status of each participant from „VoiceBrowse

Novice‟ to „VoiceBrowse Expert‟ status.

80 – 90 minutes

Scenario 2 (6 tasks) – These tasks will be similar to scenario 1 so

that performance and learnability etc. can be compared between the

two tasks

90 – 110 minutes

Questionnaire 2 – This will be the same questionnaire as

questionnaire 1 above. The difference in responses will be used to

compare usability between VB Novice and VB Expert status.

110 – 120

minutes

Final Questionnaire, to include also comparing real experience with

expectations of participants stated at start of evaluation.

 261

Craig Wootton, University of Ulster

Pre-Screening questionnaire

How would you

estimate your skills in

using PCs/Notebooks?

How would you

estimate your skills

regarding getting

information on the

Internet (e.g. news

pages, informational

pages):

How would you

estimate your skills

regarding programming

(e.g. C++, HTML,

Delphi, Java, Perl, php,

XML ...)

Knowledge (overall)

1= very few

2= few

3= medium

4= good

5= very good

1= very few

2= few

3= medium

4= good

5= very good

1= very few

2= few

3= medium

4= good

5= very good

Criterion:

Sum of all Items <6

 = inexperienced

Sum of all Items > = 6

= experienced

Subject-No.: __________

 262

Craig Wootton, University of Ulster

Initial Questionnaire

Sex:  male  female

Age: ____ years

1. Do you have Internet at home?

  Yes  No

2. Have you ever used a spoken dialog system?

 (e.g. Telephone banking, mobile phone mailbox, ticket ordering system)

  Yes  No

2.1 If yes, what kind of system(s)?

__

 263

Craig Wootton, University of Ulster

Evaluation of the Interaction

1. Overall impression of the interaction with VoiceBrowse:

 bad poor fair good excellent

2. Achievement of Goals:

2.1 The system did not always do what I wanted.

 strongly disagree disagree undecided agree strongly agree

     

2.2 The information provided by the system was clear.

 strongly disagree disagree undecided agree strongly agree

     

2.3 The information provided was incomplete.

 strongly disagree disagree undecided agree strongly agree

     

2.4 Web browsing can be done efficiently with the system.

 strongly disagree disagree undecided agree strongly agree

     

2.5 The system is unreliable.

 strongly disagree disagree undecided agree strongly agree

     

 264

Craig Wootton, University of Ulster

2.6 The system provided the desired information.

 strongly disagree disagree undecided agree strongly agree

     

3. Communication with the System:

3.1 I felt that the system understood me well.

 strongly disagree disagree undecided agree strongly agree

     

3.2 I always knew what to say to the system.

 strongly disagree disagree undecided agree strongly agree

     

3.3 I had to concentrate to understand what the system was saying.

 strongly disagree disagree undecided agree strongly agree

     

3.4 The system voice sounded natural.

 strongly disagree disagree undecided agree strongly agree

     

3.5 The information was always provided in a meaningful way.

 strongly disagree disagree undecided agree strongly agree

     

3.6. The system always presented the right amount of information.

 strongly disagree disagree undecided agree strongly agree

     

 265

Craig Wootton, University of Ulster

4. Behaviour of the System:

4.1 The system responded too slowly.

 strongly disagree disagree undecided agree strongly agree

     

4.2 The system is friendly.

 strongly disagree disagree undecided agree strongly agree

     

4.3 The system did not always do what I expected.

 strongly disagree disagree undecided agree strongly agree

     

4.4 The system made a lot of errors.

 strongly disagree disagree undecided agree strongly agree

     

4.5 I was able to recover easily from errors.

 strongly disagree disagree undecided agree strongly agree

     

4.6 The system reacted like a human.

 strongly disagree disagree undecided agree strongly agree

     

4.7 The system behaved in a cooperative way.

 strongly disagree disagree undecided agree strongly agree

     

 266

Craig Wootton, University of Ulster

5. Dialog:

5.1 I easily lost track of where I was when interacting with the system.

 strongly disagree disagree undecided agree strongly agree

     

5.2 The dialogue was jerky.

 strongly disagree disagree undecided agree strongly agree

     

5.3 I felt in control of the interaction with the system.

 strongly disagree disagree undecided agree strongly agree

     

5.4 The dialogue was too long.

 strongly disagree disagree undecided agree strongly agree

     

5.5 The dialogue quickly led to the desired goal.

 strongly disagree disagree undecided agree strongly agree

     

5.6 The interaction with the system was fast.

 strongly disagree disagree undecided agree strongly agree

     

 267

Craig Wootton, University of Ulster

6. Personal Impression:

6.1 The interaction with the system was pleasant.

 strongly disagree disagree undecided agree strongly agree

     

6.2 I felt relaxed.

 strongly disagree disagree undecided agree strongly agree

     

6.3 A high level of concentration is required when using the system.

 strongly disagree disagree undecided agree strongly agree

     

6.4 The interaction was fun.

 strongly disagree disagree undecided agree strongly agree

     

6.5 Overall, I am satisfied with the system.

 strongly disagree disagree undecided agree strongly agree

     

6.6 The interaction was boring.

 strongly disagree disagree undecided agree strongly agree

     

6.7 The interaction was repetitive.

 strongly disagree disagree undecided agree strongly agree

     

 268

Craig Wootton, University of Ulster

6.8 The interaction was frustrating.

 strongly disagree disagree undecided agree strongly agree

     

7. Usability of the System:

7.1 The system is difficult to use.

 strongly disagree disagree undecided agree strongly agree

     

7.2 It is easy to learn to use the system.

 strongly disagree disagree undecided agree strongly agree

     

7.3 Web browsing via speech was comfortable.

 strongly disagree disagree undecided agree strongly agree

     

7.4 The system is too inflexible.

 strongly disagree disagree undecided agree strongly agree

     

7.5 The system is not helpful for browsing the web.

 strongly disagree disagree undecided agree strongly agree

     

 269

Craig Wootton, University of Ulster

7.6 I prefer to browse the web in a different way.

 strongly disagree disagree undecided agree strongly agree

     

7.7 I would use the system again in the future.

 strongly disagree disagree undecided agree strongly agree

     

7.8 Using the system was worthwhile.

 strongly disagree disagree undecided agree strongly agree

     

7.9 The functionality I would look for in such a system is provided by

VoiceBrowse.

 strongly disagree disagree undecided agree strongly agree

     

 270

Craig Wootton, University of Ulster

8. Importance of System Aspects

Below, please label how important each of the aspects below are for your overall

impression of the interaction by dividing the pie accordingly. You can allocate to each

aspect as many pieces of the pie as you wish. More pie pieces for one aspect would

mean that this aspect was more important for your rating of the interaction. All pieces

added together should make up one whole pie.

Aspects:

A) System Personality (interaction style, friendliness, etc.)

B) Output quality (intelligibility of system speech and quality of the voice)

C) Input quality (understanding errors, ease of input)

D) Learnability (quick and easy to learn)

E) Intuitivity (intuitively usable without learning)

F) Efficiency (get tasks done quickly)

 271

Craig Wootton, University of Ulster

Evaluation of the System

F.1 Overall impression of the VoiceBrowse system:

 bad poor fair good excellent

F.2 I would use VoiceBrowse in special situations only.

 no yes

  

If yes, in which situations?____________________________

F.3 Browsing the web via speech in comparison to a graphical interface is:

 more difficult easier

F.4 What did you like most when using VoiceBrowse? ____________________

F.5 What did you find most troublesome when using VoiceBrowse? _________

F.6 What suggestions do you have for improving the system? ______________

__

__

F.7 Were you always aware of the back and next functions? _______________

Thank you for participating!

 272

Craig Wootton, University of Ulster

Evaluation scenarios

Scenario 1

You have just returned home from a long plane journey and you are quite tired.

However, you do want to check the news headlines before going to bed, as you have not

heard any news whilst on the flight.

Task 1: Firstly, you are interested in hearing the Northern Ireland news headlines.

Task 2: You then wish to check the entertainment news headlines. You become

interested in the story about the sequel to “Iron Man”, and ask for more details about

this.

Task 3: You then remember that in business news, oil prices were anticipated to reach

new record levels today. Use VoiceBrowse to find out if they did or not.

 Task 4: While on your flight today, you heard that the airliner currently has a sale on

Belfast routes. You enjoyed the flight, and are required to make the same flight again in

a few weeks time. Use VoiceBrowse to book a flight from Belfast to Manchester on the

22
nd

 June 2008, returning on the 26
th

 June 2008.

Task 5: You remember it is a friend‟s birthday at the end of the week, and your friend

enjoys movies. Use VoiceBrowse to search eBay for a list of DVDs.

Task 6: Finally, before going to bed, you wish to hear the top 6 technology stories from

provider PC PRO.

 273

Craig Wootton, University of Ulster

Scenario 2

Tonight you are having friends round for dinner. You have been away from the

computer for quite some time, due to preparing dinner, cleaning the house and then

showering and dressing for the party. Before your friends arrive however, you are

interested in retrieving some information online, cannot use the computer as you have

still to prepare the last stages of the meal. You use VoiceBrowse to attempt the

following 6 tasks.

Task 1: You are interested on hearing the days‟ sports headlines.

Task 2: You then wish to check the football headlines from Sky Sports. You become

interested in the story regarding Thierry Henry‟s future, so ask for more details about

this story.

Task 3: You heard briefly today that the Labour party had a poor performance in the

local election. You wish to find out what their leader, Gordon Brown, had to say about

this.

Task 4: You know that flights for a particular route to Glasgow have just came on sale

that day, and wish to book a flight on this route as early as possible to get the best fare.

Use VoiceBrowse to book a flight from Belfast to Glasgow on the13th June 2008,

returning on the 16
th

 June 2008.

Task 5: One of your friends coming for dinner is interested in video games, and asked

you to get a price for a particular console of eBay. Use VoiceBrowse to search eBay for

a list of playstations.

Task 6: Finally, before your friends arrive, you wish to hear the top 5 entertainment

stories.

 274

Craig Wootton, University of Ulster

Appendix C: Evaluation Results

Interaction Parameters (Quantitative) Results

Tables A and B overleaf show the Interaction Parameters recorded by the 32

participants during their evaluations. Table A shows the Interaction Parameters during

the Untrained phase of the evaluation, and Table B shows the Interaction Parameters

during the Trained phase of the evaluation. In both Tables A and B, the top sixteen

participants are using System 1, and the bottom sixteen participants are using System 2.

The legend used to describe the Interaction Parameters in the top row of both tables is:

sd – Scenario Duration t – Scenario Time ds – Number of

Disambiguate States

to – Number of time

Outs

std – System Turn

Duration

nqs – Number of New

Query States

ts - Task Success no – Number of No

Matches

ttd – User Turn

Duration

fsr – Number of Feed

Success States

bi – Number of Barge-

Ins

hr – Number of Help

Requests

 275

Craig Wootton, University of Ulster

DIALOGUE 1 (UNTRAINED)

user sd std utd t nqs fsr ds ts bi to no hr

15 681860 8622 1348 88 8 6 1 1 13 6 4 5

17 494280 7566 1320 66 8 6 0 1 3 1 2 0

8 290880 8065 1384 43 7 4 0 1 6 0 3 1

30 373460 7122 1569 52 10 4 0 1 2 1 5 0

1 489601 7407 1005 75 5 5 2 1 10 0 2 0

2 561200 11025 1368 87 12 6 1 1 14 1 7 0

6 372460 6600 1008 59 9 6 0 1 5 0 3 0

5 459920 6951 1053 72 10 6 0 1 10 2 4 2

25 471490 8303 1032 55 6 6 0 1 0 1 0 0

28 427700 8040 1233 55 6 6 0 1 5 3 0 0

26 448490 7537 1108 59 7 6 0 1 1 0 1 0

18 515820 7229 933 76 6 5 0 1 14 5 1 6

19 503730 8273 809 68 7 6 0 1 10 3 2 3

12 483590 7402 982 70 8 5 4 1 5 2 2 0

9 445620 8128 1000 58 9 4 1 1 3 3 2 0

22 473060 7534 857 62 9 6 0 1 5 5 1 0

7 459884 7364 1608 32 5 0 0 1 1 0 0 0

24 458891 6906 1863 51 6 0 0 1 2 1 0 0

29 457899 6377 3349 45 6 0 0 1 0 1 0 0

31 456906 6798 1388 34 5 0 0 1 2 1 0 0

23 455913 6691 1553 36 6 0 0 1 0 0 0 0

10 454920 5418 1752 46 6 0 0 1 2 0 0 0

3 453928 8239 1211 56 6 0 0 1 5 1 1 0

4 452935 8299 892 37 5 0 0 1 2 2 0 0

13 451942 7597 2335 52 6 0 0 1 1 3 1 0

27 450950 6619 3401 45 6 0 0 1 0 1 0 0

14 449957 5898 2664 43 8 0 0 1 1 1 1 0

32 448964 7363 2849 34 6 0 0 1 0 2 0 0

11 447971 6907 2133 41 6 0 0 1 2 0 0 0

20 446979 6331 2812 52 6 0 0 1 1 1 0 0

16 445986 6037 1439 42 7 0 0 1 1 0 0 0

21 444993 5924 1075 27 4 0 0 1 2 1 0 0

Table A: Interaction Parameters for 32 Users During Untrained Dialogue

 276

Craig Wootton, University of Ulster

DIALOGUE 2 (TRAINED)

 user Sd std utd t nqs fsr ds ts bi to no hr

 15 313500 6538 1330 56 3 6 4 1 12 0 1 0
 17 304620 7015 945 55 5 4 8 1 13 1 2 0
 8 387300 8640 1138 52 7 5 3 1 4 0 1 1
 30 298760 7913 988 44 5 5 2 1 6 0 0 0
 1 387380 6635 1400 70 1 6 1 1 10 1 0 0
 2 308580 5970 1063 54 5 6 2 1 9 0 0 0
 6 459780 7578 813 65 8 6 3 1 4 1 2 0
 5 453910 6638 1096 78 6 6 5 1 18 1 4 0
 25 254788 7917 624 39 5 5 1 1 1 0 0 0
 28 335760 9592 1077 44 4 5 2 1 7 0 0 0
 26 477520 7055 1250 69 8 6 4 1 6 0 1 0
 18 249430 7388 849 42 1 5 3 1 9 0 1 0
 19 466520 6820 806 74 8 5 4 1 15 2 3 1
 12 334670 6914 746 56 7 5 2 1 12 0 1 0
 9 438660 7803 999 56 5 4 1 1 2 0 0 0
 22 389620 7834 844 55 7 6 2 1 6 1 0 0

 7 308670 6241 1863 44 6 0 0 1 1 0 0 0
 24 267640 6030 1787 41 6 0 0 1 1 0 0 0
 29 246150 6476 1470 37 5 0 0 1 1 1 0 0
 31 209430 6304 1377 33 5 0 0 1 1 0 0 0
 23 201000 5658 2147 33 5 0 0 1 2 0 0 0
 10 276260 5926 1548 45 6 0 0 1 2 0 0 0
 3 322170 6922 1083 48 6 0 0 1 4 0 1 0
 4 322420 6520 1396 50 7 0 0 1 4 0 0 0
 13 357590 6716 1957 48 6 0 0 1 0 0 0 0
 27 215220 6411 2380 32 5 0 0 1 1 0 0 0
 14 346280 6267 2150 50 7 0 0 1 1 0 0 0
 32 275700 5759 1476 44 6 0 0 1 0 0 0 0
 11 332070 6295 2070 48 6 0 0 1 1 0 0 0
 20 300460 5709 2857 46 6 0 0 1 2 0 0 0
 16 343890 5452 1844 53 6 0 0 1 3 1 0 0
 21 261660 4772 1798 47 7 0 0 1 3 1 0 0

Table B: Interaction Parameters for 32 Users During Trained Dialogue

 277

Craig Wootton, University of Ulster

Qualitative (Questionnaire) Results

Tables C and D overleaf show the qualitative data collected from questionnaires

presented to the 32 participants. Table C shows the participants‟ answers after the

Untrained phase of the evaluation, and Table D shows the participants‟ answers after the

Trained phase of the evaluation. The first sixteen participants represent those

interacting with System 1, and the second set of sixteen participants represent those

interacting with System 2.

278

Craig Wootton, University of Ulster

1
5

1
7 8

3
0 1 2 6 5

2
5

2
8

2
6

1
8

1
9

1
2 9

2
2 7

2
4

2
9

3
1

2
3

1
0 3 4

1
3

2
7

1
4

3
2

1
1

2
0

1
6

2
1

Sex M M F F M M F F M M F F M M F F M M F F M M F F M M F F M M F F

Age
6
1

6
0

6
3

5
5

2
5

2
4

2
5

2
5

6
8

6
4

6
2

6
1

2
6

2
3

2
1

2
2

6
6

5
8

6
0

7
1

2
3

2
3

2
4

2
9

7
0

6
5

6
6

7
0

2
5

2
5

3
0

2
0

Syste
m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2.1 4 3 3 4 2 2 2 2 2 2 4 4 2 2 3 2 3 2 3 4 2 2 3 5 4 2 3 3 3 5 5 4

2.2 4 4 4 4 5 5 5 5 4 4 1 4 4 3 4 4 4 4 2 4 4 4 5 5 4 4 3 3 4 4 5 4

2.3 2 1 2 1 2 3 3 2 4 2 2 2 2 2 2 3 2 2 2 2 4 3 2 2 2 4 4 3 2 1 2 2

2.4 4 4 4 3 3 5 3 3 4 4 4 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 5 4 5

2.5 4 3 4 4 4 4 4 4 4 3 5 4 4 4 3 3 4 4 3 4 4 4 5 4 5 3 4 4 4 4 4 5

2.6 4 4 5 4 5 4 4 4 4 4 5 4 5 3 4 3 5 4 4 5 3 4 5 4 4 3 4 3 4 5 4 4

3.1 4 3 4 4 3 3 2 2 3 4 4 1 4 3 3 2 4 4 3 4 4 4 4 4 4 4 4 4 4 5 4 4

3.2 2 4 3 4 4 5 1 2 2 2 4 1 2 4 2 2 4 4 2 3 2 5 5 4 3 3 4 2 4 4 3 3

3.3 4 2 4 2 1 1 5 4 4 4 4 4 5 2 4 4 4 4 5 4 5 2 2 2 4 4 4 4 2 4 2 3

3.4 4 3 4 4 4 4 4 2 4 2 4 3 3 4 3 2 4 3 1 4 2 2 3 4 4 3 4 2 3 3 4 3

3.5 4 4 4 4 5 5 4 4 4 4 4 4 4 4 3 2 4 4 2 4 2 4 3 5 4 4 4 3 4 4 4 4

3.6 4 3 4 4 4 5 3 4 4 4 4 4 4 3 4 2 4 4 3 4 2 2 3 4 4 3 4 3 3 4 4 4

4.1 4 2 2 2 4 4 2 1 2 3 2 3 2 3 4 3 3 2 2 5 5 2 2 2 1 2 2 2 3 2 2 2

4.2 4 3 4 4 5 5 5 4 4 4 4 2 4 4 4 2 4 4 3 4 3 3 3 4 4 3 4 4 3 5 4 4

4.3 2 4 3 4 2 1 2 2 3 2 4 2 2 2 3 2 3 2 2 4 4 4 4 4 4 4 2 2 3 5 4 4

4.4 5 3 4 4 3 4 4 4 4 4 4 4 4 4 3 3 4 4 4 5 4 3 5 4 5 3 4 4 4 5 4 4

4.5 4 4 4 4 3 5 4 2 4 3 4 4 3 3 4 3 4 4 2 3 1 4 4 4 4 4 2 2 3 4 4 3

4.6 4 2 4 3 2 5 3 3 4 4 4 3 2 5 3 2 4 4 2 4 2 3 4 3 4 3 4 3 4 3 3 4

4.7 4 4 4 3 4 4 5 4 4 4 4 2 4 4 4 3 4 4 3 4 3 4 5 3 4 3 3 3 4 5 4 4

5.1 2 2 2 2 2 1 2 4 3 4 4 4 2 3 2 3 2 4 4 4 4 2 1 2 2 3 4 4 2 4 2 2

5.2 1 3 2 2 2 1 2 2 4 4 2 4 3 2 4 4 2 4 4 2 3 3 2 2 1 2 2 4 2 2 3 2

279

Craig Wootton, University of Ulster

5.3 4 4 4 4 4 5 2 3 3 2 3 3 4 4 3 3 4 4 1 3 3 4 4 3 4 3 3 2 4 4 4 4

5.4 5 3 4 4 4 5 4 4 4 4 4 2 5 2 3 3 4 4 4 4 2 4 5 4 5 3 4 2 3 4 4 4

5.5 4 4 5 3 4 5 4 3 4 4 4 3 4 3 2 3 4 4 2 4 4 4 5 4 4 4 4 3 4 4 4 4

5.6 4 4 4 4 4 5 3 4 4 3 4 2 4 4 2 2 4 4 4 5 2 4 4 4 4 4 4 2 2 4 4 4

6.1 4 4 5 4 4 5 5 4 4 3 4 4 3 5 3 3 5 4 2 4 3 4 4 4 4 3 4 4 4 5 4 4

6.2 4 4 4 4 2 5 4 4 4 4 3 3 2 3 3 2 5 4 2 3 2 4 4 4 4 2 2 2 4 4 4 4

6.3 2 2 2 2 2 5 2 3 2 2 2 2 2 2 2 2 4 2 2 2 2 4 3 3 4 2 2 2 3 2 4 4

6.4 4 4 5 4 4 5 4 4 3 3 4 3 2 4 3 2 5 4 2 3 4 3 4 4 4 3 3 3 3 4 3 4

6.5 4 3 5 4 4 5 4 3 4 3 4 4 4 3 4 3 5 4 3 5 4 4 5 5 4 3 4 3 4 5 4 5

6.6 4 2 1 2 1 1 1 1 2 2 2 2 2 1 2 4 2 2 2 2 3 3 2 1 2 3 2 4 3 1 2 1

6.7 2 3 2 2 4 2 4 4 4 4 2 4 2 3 3 4 2 4 4 3 4 4 3 1 2 3 2 4 3 2 2 2

6.8 2 2 2 2 2 3 4 2 2 3 2 2 2 3 3 4 2 2 2 2 2 2 2 1 1 3 3 4 2 1 2 2

7.1 4 4 4 4 5 5 4 4 4 4 4 4 4 4 4 3 4 4 3 3 4 5 4 5 4 3 3 3 4 5 4 4

7.2 4 4 5 4 5 5 4 4 4 4 1 4 5 3 4 3 5 4 3 3 4 5 4 4 4 3 4 3 5 5 5 4

7.3 4 3 5 4 4 5 4 4 4 3 4 4 4 4 4 3 5 4 2 4 4 4 3 4 4 3 4 3 4 5 4 4

7.4 2 3 2 2 4 3 2 3 2 3 2 2 2 4 3 3 2 2 3 2 3 3 4 1 2 3 3 3 2 1 2 2

7.5 2 2 2 2 2 1 1 1 2 3 2 2 1 1 2 3 2 2 3 2 2 2 1 2 2 3 2 2 1 1 2 1

7.6 2 3 2 3 4 3 4 4 3 4 2 2 4 3 3 4 2 4 4 2 4 3 4 4 2 4 3 4 2 4 2 2

7.7 4 5 4 4 4 3 3 4 4 4 4 4 3 4 4 3 5 4 2 4 4 4 4 4 4 2 3 3 4 4 4 4

7.8 4 4 4 4 4 3 4 3 4 4 4 4 4 5 3 4 5 4 2 4 4 4 5 4 4 3 4 3 4 5 5 4

7.9 4 4 5 3 4 5 3 5 3 4 5 4 4 3 4 2 5 4 3 4 5 4 3 4 4 3 4 3 4 5 5 4

8a 3 8 5 4 2 2 2 1 5 3 5 3 3 1 3 2 5 2 4 5 5 2 3 3 5 4 4 4 3 3 3 4

8b 5 5 4 4 5 4 1 4 5 5 6 5 3 1 2 3 5 5 4 4 5 4 4 4 3 2 4 4 3 4 4 4

8c 3 4 5 4 3 2 7 5 4 4 3 3 4 7 5 4 4 3 3 3 5 6 2 4 0 3 4 4 5 3 3 4

8d 5 4 6 4 4 7 5 6 4 6 3 5 4 3 6 4 4 6 6 5 5 2 3 5 5 2 4 4 5 5 5 4

8e 3 2 2 3 4 6 5 3 3 3 2 4 5 5 4 5 3 2 3 1 2 2 7 3 4 5 4 5 3 5 5 4

8f 5 1 2 4 6 3 4 5 3 3 5 4 5 7 4 6 3 6 4 5 2 8 5 5 7 8 4 3 5 4 4 4

Table C: Qualitative Data After Untrained Scenario

280

Craig Wootton, University of Ulster

 15 17 8 30 1 2 6 5 25 28 26 18 19 12 9 22 7 24
2
9

3
1

2
3

1
0 3 4 13 27 14

3
2

1
1

2
0

1
6

2
1

2.1 5 2 4 4 2 3 3 2 3 3 4 4 4 2 2 3 4 4 4 4 2 4 3 4 4 4 4 3 3 5 4 4

2.2 5 5 5 4 4 5 5 5 4 4 4 4 4 5 4 3 5 4 3 4 3 4 5 5 4 4 4 4 3 5 4 4

2.3 1 2 2 2 3 3 1 2 2 2 2 2 1 2 2 3 1 2 2 2 3 2 2 2 2 3 2 3 2 2 2 2

2.4 5 3 4 5 2 4 4 4 4 4 5 4 5 4 3 2 4 4 3 4 2 3 4 4 4 4 4 3 4 5 4 4

2.5 5 4 4 5 4 4 4 4 4 3 4 3 4 4 4 3 4 4 3 5 2 4 4 5 4 4 4 3 4 5 4 4

2.6 5 4 5 4 4 5 5 4 4 4 4 4 5 3 4 3 5 4 4 5 3 4 4 4 4 4 4 3 4 5 4 4

3.1 1 3 5 4 2 4 4 4 2 3 3 4 5 3 3 2 4 4 4 5 2 4 3 4 4 4 4 4 4 4 4 4

3.2 4 3 5 4 4 5 4 3 3 4 3 4 3 4 2 2 4 4 2 3 2 4 4 4 4 4 4 3 3 4 3 4

3.3 4 3 2 4 2 1 4 4 4 4 4 5 4 3 4 4 2 4 4 5 2 2 2 1 2 3 2 4 3 4 3 2

3.4 4 2 4 3 3 4 3 2 4 3 4 3 3 4 2 2 4 4 2 4 3 2 3 4 4 3 4 4 2 4 3 3

3.5 5 3 4 4 4 5 4 4 4 4 4 2 4 4 3 3 4 4 3 4 2 4 3 4 4 4 4 4 4 4 4 4

3.6 5 3 5 4 2 5 4 3 4 4 4 3 5 4 4 3 5 4 4 4 2 3 4 4 4 3 4 4 3 2 4 4

4.1 1 2 2 2 2 3 2 2 3 2 2 2 1 3 4 4 3 2 2 2 2 2 3 1 2 2 2 2 2 2 2 2

4.2 5 4 4 4 3 5 4 4 4 4 4 3 4 5 4 2 4 4 3 4 3 3 3 4 4 4 4 3 4 4 4 4

4.3 5 4 4 4 2 2 4 2 3 3 4 4 4 2 3 4 4 4 2 4 2 4 3 4 4 4 4 3 3 4 4 3

4.4 5 3 4 4 2 1 4 4 4 4 4 4 4 4 3 4 4 4 4 5 4 4 5 5 4 4 4 4 4 5 4 4

4.5 5 4 4 4 2 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 2 3 4 4 4 4 4 3 3 4 4 4

4.6 5 3 4 3 2 4 3 2 4 4 2 2 3 3 2 2 4 4 2 4 2 3 3 4 4 3 4 4 3 3 3 4

4.7 5 4 4 4 4 4 5 4 4 4 4 2 4 3 3 3 4 4 3 5 3 4 4 4 4 4 4 4 4 4 4 4

5.1 1 2 2 2 2 1 2 2 2 3 2 2 1 2 2 2 2 2 4 3 4 2 3 2 2 3 4 3 2 1 2 2

5.2 1 2 2 2 4 1 2 2 2 4 2 3 2 2 4 4 2 4 3 1 3 2 2 2 2 2 2 2 3 1 3 2

5.3 5 4 4 4 2 5 4 4 3 4 4 4 5 3 3 4 4 4 2 4 2 4 3 4 4 4 4 3 4 4 4 4

5.4 5 3 4 4 4 4 4 4 4 2 4 3 5 4 3 2 4 4 4 4 2 4 5 4 4 3 4 2 3 4 4 4

281

Craig Wootton, University of Ulster

5.5 5 4 5 4 4 5 4 3 4 4 4 4 4 3 3 3 4 4 4 5 3 4 4 4 4 4 4 3 4 4 4 4

5.6 5 3 4 3 2 5 4 4 4 3 4 4 4 4 2 3 4 4 4 4 2 4 3 4 4 4 4 4 3 4 4 4

6.1 5 4 4 4 3 5 4 4 4 4 4 3 4 5 3 2 4 4 3 4 4 3 3 4 4 4 4 4 3 5 4 4

6.2 5 4 4 4 4 5 4 4 4 4 3 4 4 4 3 3 5 4 2 3 4 4 4 4 4 4 4 2 4 5 4 4

6.3 2 3 2 2 2 4 2 3 2 2 2 2 2 2 2 2 4 4 2 2 3 4 4 4 4 3 4 2 3 4 3 4

6.4 5 4 5 4 4 5 4 4 3 3 4 3 3 4 3 2 5 4 2 4 4 3 4 4 4 3 4 3 3 4 4 4

6.5 5 3 4 4 4 5 4 4 4 3 4 4 4 4 4 3 5 4 3 5 4 4 4 5 4 3 4 3 4 5 5 5

6.6 1 2 2 1 1 2 1 2 2 2 2 1 3 2 2 4 2 2 2 2 2 2 3 1 2 3 2 2 3 1 2 2

6.7 1 2 2 2 4 2 2 4 4 3 2 3 2 4 4 4 2 4 2 2 4 4 2 1 2 3 2 2 2 2 2 2

6.8 1 3 2 1 2 2 3 3 2 4 2 2 2 3 3 3 2 2 2 2 2 4 3 1 2 3 2 2 2 1 2 2

7.1 5 4 5 5 5 5 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 5 5 4 4 4 4 4 5 5 4

7.2 5 4 5 4 5 5 5 4 4 4 4 4 5 5 4 3 5 4 4 4 4 4 5 4 4 3 4 4 5 5 5 4

7.3 5 3 5 4 4 5 5 4 4 4 4 4 4 4 3 4 5 4 3 4 4 4 4 4 4 3 4 4 4 5 4 4

7.4 1 2 2 2 4 3 2 3 2 2 2 2 2 4 3 4 2 2 3 1 3 3 3 2 2 3 2 2 2 1 2 2

7.5 1 1 1 2 2 1 1 2 2 3 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2

7.6 2 3 2 3 4 4 4 3 3 4 2 2 3 4 3 4 2 4 4 3 4 3 3 4 2 4 3 3 2 4 3 2

7.7 5 5 4 4 4 5 3 4 4 4 4 5 4 5 4 3 5 4 3 4 4 4 4 4 4 3 4 4 3 5 5 4

7.8 5 5 4 4 4 5 4 4 4 4 4 4 5 5 3 4 5 4 3 4 4 4 4 4 4 3 4 4 3 5 5 4

7.9 5 3 5 4 4 5 4 4 3 3 4 4 4 3 4 2 5 4 3 5 5 3 4 5 4 3 4 4 3 5 5 4

8a 3 8 3 4 3 2 3 1 4 5 4 3 3 2 3 1 4 2 4 6 4 2 5 3 3 4 8 4 3 3 3 4

8b 4 5 3 4 3 2 1 4 4 4 5 4 3 1 3 5 4 3 4 2 5 4 5 5 7 4 0 4 3 4 4 4

8c 3 3 3 3 3 3 6 4 4 3 3 5 4 5 5 2 4 2 3 2 5 6 2 5 1 3 4 4 4 3 3 4

8d 3 3 6 5 4 5 6 5 4 6 3 6 4 4 5 7 5 5 6 7 4 2 4 0 4 6 4 5 5 5 5 4

8e 5 3 4 4 4 6 4 5 4 3 5 3 5 5 3 6 4 5 3 4 3 2 2 4 4 4 4 3 4 4 5 4

8f 6 2 5 4 7 6 4 5 4 3 4 3 5 7 5 3 3 6 4 3 3 8 6 7 5 3 4 4 5 5 4 4

Table D: Qualitative Data After Trained Scenario

