2.0 LITERATURE REVIEW

2.1 Intelligent Tutoring Systems

2.1.1 Introduction

Computer-based instruction systems that display some degree of “intelligence” have been used in education for over 20 years. Computer-based training (CBT) and computer-aided instruction (CAI) were among the first such systems that were introduced to teach students using computers. While both CBT and CAI may seem to be effective in helping learners, they are incapable of providing individualized attention and feedback as a human tutor would have given to the students. Thus, a new field of research has emerged known as intelligent tutoring systems (ITSs). 

An intelligent tutoring system (ITS) is a software system that uses artificial intelligence (AI) techniques and tutors people in a given domain. The goal of intelligent tutoring system is to provide a learning experience for each student that approaches the standard of learning that he/she would receive from a human tutor. To achieve its goal, intelligent tutoring system software monitors each student’s interactions and builds a ‘student model’ for each individual. This model comprises the student’s performance on training/problem-solving and remediation exercises; knowledge of all information and remediation received; the knowledge mastered, failed and misunderstood by the students; and the student’s learning style. Apart from the student model, two other important models in an ITS includes the domain model and the tutor model. The domain model represents the knowledge of the domain while the tutoring model contains methods on how to select, sequence and present materials to the students. A more detailed discussion about these three models is presented in the following section.

These systems are also intended to facilitate learning-by-doing: transforming factual knowledge into experiential knowledge. They attempt to combine the problem-solving experience and motivation of  ‘discovery’ learning with the effective guidance of tutorial interactions. To enable this, the system must have its own problem-solving expertise, its own diagnostic or student modelling capabilities and its own explanatory capabilities. In order to orchestrate these reasoning capabilities, it must also have explicit control or tutorial strategies specifying when to interrupt a student’s problem-solving activity, what to say and how best to say it; all in order to provide the student with instructionally effective advice (Sleeman and Brown, 1982).    

2.1.2 Components of an ITS

An intelligent tutoring system should comprise the following four components: the domain model, the tutor model, the student model and the user interface (Burns and Capps, 1988). Figure 2 shows the relationships between the main components of an ITS.

[image: image1.png]INITIALISE
PROGRAM

|

DISPLAY
OPTIONS

MENU
/

TUTORIAL

[ —

EXERCISE

Ny

END
PROGRAM





Figure 2. The Components of an ITS

2.1.2.1 The domain model 

The domain model (sometimes referred as the expert model) contains the knowledge of the specific domain to be taught. It forms the backbone of any intelligent tutoring system (Anderson, 1988) as it provides the domain intelligence. The intelligent tutoring system uses its domain knowledge to reason about and solve a problem posed by a student or set by the system. The knowledge or expertise has to be encoded and represented in such a way it supports reasoning that resembles the human problem-solving process within the teaching domain (Siemer and Angelides, 1998).

Three approaches have been used to encode knowledge in the domain model. These are known as black box models, glass-box models and cognitive models. 

Black-box models 
A black box model is a way of reasoning about the domain without requiring any codification of the knowledge that underlies human intelligence. It can be used as a judge of correctness as it generates correct input-output behaviour over a range of tasks in the domain. The classical example of a black box model is the unique work on SOPHIE (Brown et al., 1982). The underlying circuit simulator, SPICE, a black box expert, was used to determine the reasonableness of various measurements that a student would make in troubleshooting faulty electronic circuits. This expert is used only to check the consistency of student’s hypotheses and answer some of his questions. However, its mechanisms are concealed from the student since they are not the mechanisms the student is expected to gain (Burton and Brown, 1982).

Glass-box models
The second approach to encoding knowledge in the domain model is using the glass-box model. This approach uses knowledge-engineering techniques to control the tutorial mechanisms of the system. A rule-based formalism is usually used to represent the knowledge. The implementation does not necessarily correspond to the way a human expert reasons. It allows only for explanations of the information process inherent in the rules of its knowledge base. An example of this glass-box model is GUIDON (Clancey, 1982), an ITS which teaches physician consultancy. GUIDON uses MYCIN, an expert system for diagnosing bacterial infections as the domain model within an ITS. Some difficulties arose from this project. For example, the actual reasoning process used by MYCIN to deploy its knowledge, an in-depth backward search, is not the way the knowledge is deployed by humans. In addition, the highly compiled rules of MYCIN were difficult for GUIDON to understand and too complex to be directly taught to novices. 

Cognitive models 

A lesson learned from the GUIDON project is that for tutoring systems to be effective, the way the knowledge is deployed is equally important.  The domain model must deploy its knowledge according to the way a human does. This principle leads to the cognitive modeling approach.

The goal of the cognitive modeling approach is to develop a simulation of problem solving in a domain in which the knowledge is composed into meaningful, human-like components and deployed in a human-like manner. In this way, the system can communicate the domain knowledge clearly to the student.                                           
Cognitive domain models distinguish between three types of domain knowledge: procedural, declarative and qualitative. Procedural knowledge is concerned about how to perform a task such as mathematical problem solving. Meanwhile, declarative knowledge conveys knowledge in the form of a set of organized facts to enable human reasoning. For example, there are domains like geography where the tutorial goal is to convey declarative knowledge in the form of a set of facts appropriately ordered so that one can reason with them. Qualitative models allow one to reason about behaviour using mental models of systems such as when troubleshooting an electronic device.

Procedural knowledge in a cognitive domain model usually takes the form of a rule-based production system. BUGGY (Burton, 1982) and the LEEDS modeling system (Sleeman, 1982) are among the systems that use this rule-based approach. These systems involve a set of if-then rules matched to a working memory of facts. This working memory resembles the short-term memory of human. Declarative knowledge representations are useful when there is a need for the student to understand the principles and facts of a domain and applying them. However, this does not mean that the aims of procedural and declarative tutoring are mutually incompatible. Sometimes the nature of the subject matter requires the student to be both facile about the rules of a problem domain but clear about the justifications for the rules. This can be the case in the domain of medical diagnosis (Clancey, 1982).

2.1.2.2 The student model

An intelligent tutoring system is a computer program that instructs the student in an intelligent way. It infers a model of the student’s current understanding of the subject matter and uses this model to adapt the instruction to the student’s needs (VanLehn, 1988). This model is referred to as the student model. Student modeling is the most important part of an ITS since the student has the central role in the teaching process (Stankov, 1996). The behaviour of an ITS depends largely on the student model, which in turn depends on the domain model for the diagnosis of the student’s knowledge. An ideal student model should contain the aspects of the student’s knowledge, feeling and behaviour that might affect the student’s learning (Tong, 1997). 

The student model can be classified into three categories: bandwidth, target knowledge type and differences between student and expert (VanLehn, 1988). Bandwidth is a rough categorization of the amount and quality of student’s input. The input can be any various kinds of information on the student’s actions. The student’s mental state in problem solving is taken into account when measuring the bandwidth. The highest bandwidth an ITS could reach would be a list of the mental states that the student traverses while solving a problem. 

Student models can solve the same problems that students do and can therefore be used to predict students’ answers (VanLehn, 1988). Solving problems requires some kind of interpretation to generate the problem solutions. Target knowledge type refers to the type of interpretation required in the process of applying knowledge in the student model during problem solving. It can be divided into procedural and declarative knowledge. A procedural interpreter makes decisions based on local knowledge. Local knowledge is analogous to a man with a flashlight who can only see a little way from the strand of knowledge he is standing in. He decides where to turn to based on his knowledge locale and the current state of the problem (VanLehn, 1988).  Procedural knowledge representations have been used for skills such as algebra equation solving (Sleeman, 1982) and game playing (Burton and Brown, 1982). A declarative interpreter constantly searches over the whole knowledge base, assembling facts and deducing the answers. Declarative knowledge representations have been used in various applications such as meteorology (Stevens et al., 1982).

Most intelligent tutoring systems use the same knowledge representation language for both the expert model and the student model. Theoretically, an ITS should have one knowledge base to represent the expert model and another to represent the student model. However, economy and implementation considerations usually result in a merger between the two models. The student model represents the sum of knowledge from the expert model plus the difference between the expert and the student. There are basically two kinds of differences: missing conceptions and misconceptions. A missing conception is an item of knowledge that an expert has and the student does not. A misconception is an item that the student has and the expert does not. Some systems can only represent missing conceptions. Conceptually, the student model is a proper subset of the expert model. Such a student model is known as an overlay model. The student’s knowledge is compared with the expert domain knowledge. A student model therefore consists of the expert model plus a list of items that are missing. Figure 3 illustrates this concept.

Some systems represent both misconceptions and missing conceptions. Most of the student models under this class employ a library of predefined misconceptions and missing conceptions. The records in the library are referred to as bugs. Thus, a student model consists of an expert model plus a list of bugs. The system makes student diagnosis by findings bugs from the library and when added with the expert model, yields a student model that fits the student’s performance. 

[image: image4.wmf] 

User Interface

 

Domain Model

 

Knowledge

 

Expertise

 

Tutor Model

 

Knowledge

 

Didactics

 

Student Model

 

Knowledge

 

Diagnosis

 


Figure 3. The Overlay Model

The alternative to the bug library is a library of bug parts. Bugs are formed during diagnosis and are not predefined. The libraries of the bug parts must be assembled by the designer of the ITS. It is easier to form the bug part library because it is usually smaller compared to the bug library.     

2.1.2.3 The tutoring model

An intelligent tutoring system should display various tutoring characteristics. These are contained in the tutoring model. The characteristics of the tutoring model (Halff, 1988) includes: 

a) controls over the tutorial discourse, i.e. the representation of the instructional knowledge for sequencing and selecting the appropriate materials of the subject matter

b) the ability to respond to the student’s queries about instructional goals and content

c) strategies to offer help when needed and ways of delivering it

The goal of this model is to circumscribe the nature of tutoring and to implement it as a solution to the educational problem. The central issues in the tutoring model are the problems of developing methods for selecting and sequencing material and methods for presenting it.

Selecting and sequencing materials presents two problems: formulating a representation of the material, and selecting particular concepts from that representation. The representation of knowledge for instruction usually requires an adequate expert module (Anderson, 1988) and incorporating some form of propaedeutics. Propaeduetics refer to knowledge which is needed to enable learning but not for achieving proficient performance. The assumption is that skilled performance can be achieved through practice. Propaedeutic representations have two characteristics. Firstly, they make clear the functional basis of the procedures used in exercising the skill. Secondly, they are manageable with the limited cognitive resources available to students. As a result, they serve (a) to relate theory to practice; (b) to justify, explain, and test possible solutions; (c) as a stepping-stone to more efficient problem-solving strategies; and (d) strategies for management of working memory during intermediate stages of learning. Thus, propaedeutics can serve to support the student’s performance up to an intermediate level (Halff, 1988).  

The nature of the subject matter has some influence in selecting and sequencing material. Some tutors, which are known as expository tutors, are primarily concerned with factual knowledge and inferential skills. Whereas procedure tutors teach skills and procedures that have application outside the tutorial situation. Therefore, the tutoring model should be able to use different tutoring strategies according to different needs. Expository tutors may use mostly dialogues as the form of communication. Procedural tutors may tend to use examples and coached exercises to help the student to build the procedural skills (Tong, 1997).  

The tutoring model should also cover the issues of presenting the material, ways of responding to students’ questions and the conditions and content of tutorial intervention. Dialogue is one form of presenting the materials as used in expository tutoring. Another way is through the use of worked examples or guided practice to introduce students to the procedures that they must learn and understand. These procedures must be based on the representations (including propaedeutic ones) that students need to acquire the target skills and presented in a way that shows how each step is being applied.        

Tutorial intervention is needed in a tutoring model to maintain control of the tutorial situation, to protect students from incorrect learning and to keep students from wandering to paths that are not instructionally useful. There are two major approaches to decisions about tutorial intervention; model tracing and issue-based tutoring. Model tracing calls for intervention whenever students drift away from a known solution path. Issue-based tutoring intervenes when a tutor can make a positive identification of a particular occasion for intervention.

2.1.2.4 The user interface

The user interface acts as a front-end to an ITS and it provides a means of interaction between the student and the system. The aim of the user interface is to enhance ‘conversation’ between the system and the student to facilitate the communication of knowledge between both parties (Tong, 1997). James Miller (Miller, 1988) emphasizes making appropriate tradeoffs in the design of ITS due to several issues. Firstly, the learner working with an ITS must learn some subject matter that he or she may not understand. An ITS should not complicate the matter by having a complex interface to deal with. If the user interface is poorly designed, the tutoring session will probably be ineffective. The goal of interface design is therefore to make the interface transparent.  

There are basically two basic styles of interface design (Miller, 1988). First-person interfaces, or direct manipulation allows users to become direct participants in the domain. An example of this style of interaction is the use of icons. One of the advantages of iconic interaction is that learners do not have to remember names of documents, commands and so forth as everything is contained in the icon structure. The strength of direct manipulation is its self-evident properties; its weakness is extensibility. Second –person interfaces allow the users to control the domain by instructing the system to carry out desired actions. Command languages used by the users are fairly well understood and can powerfully interact with the system. Menus and natural language interfaces are two types of commonly used second person interface. 

The development in technology allows more interfacing techniques to be applied which allows information to flow freely and directly between the student and the system. One example is through the use of multimedia technology (Tong, 1997). The user interface provides the environment in which tutoring takes place and facilitates the presentation of the tutorial material. Another new way of interaction is through the use of animated pedagogical agents (Johnson et al., 2000). This rich, face-to-face interaction with animated agents provides a new metaphor for human-computer interaction based on dialogue.         

In short, the user interface should be intuitive to use, in order to facilitate the task of learning . The quality of the interface may influence the student’s attitude towards the overall use of the tutoring system. 

2.2 ITS in Databases 

There are several existing intelligent tutoring systems that tutor in the domain of databases. However, not many of them focus specifically on the topics of Data Modelling. Thus, an attempt to provide a new learning environment in these areas with some distinct features is intended to be a novel one.  

DB-Tutor (Raguphati and Schkade, 1992), an intelligent tutoring system for database design was developed using hypertext. It is designed to assist users in database design by providing examples and graphics to illustrate database design techniques. ‘Database design’ here refers to the ability of the database designer to apply a number of guidelines and rules-of-thumb in designing a database. This sometimes involves creativity and use of heuristics in arriving at a good design. The domain was restricted to conceptual database design using the relational model.  The information on databases was sorted into related topics and presented in a nonlinear manner using hypertext in the form of nodes and links. The idea of hypertext is to link related information together, irrespective of their location. A node is a continuous flow of text. All terms within a topic that referenced another topic were represented as links. For example the two topics ‘Normalization’ and ‘Relational Model’ was represented as a link from one topic to the other.  

DB-Tutor was implemented using a hypertext software tool. Only two of the primary components of ITS were present in the system. The components are the domain model, which consists the information on database design and the tutoring model, which provides facilities for presentation of the information. With the absence of the student model, an important component of an ITS, this system is incapable of monitoring the student’s progress and current understanding of the subject matter. Student modeling is the most important part of an intelligent tutoring system since the student has the central role in the teaching process (Stankov, 1996).

Another intelligent tutoring system in the database domain, SQL-Tutor (Mitrovic, 1998; Mitrovic and Ohlsson, 1999), tutors students in the dominant database language, SQL (Structured Query Language). It is designed as a guided discovery-learning environment and supports problem solving, conceptual and meta-learning. It is based on Constraint-Based Modelling, a student modelling approach proposed by Stellan Ohlsson. A constraint-based model represents knowledge about a domain as a set of constraints on correct solutions. The constraints partition the universe of all possible solutions into the correct and incorrect ones. This approach concentrates on the violations of the basic principles in the domain of instruction. Constraint violations are identified by inspecting the student’s solution and comparing it to the stored ideal solution. If the constraint is violated, this outcome will be recorded in the student model and appropriate action is taken by the system. For example, when a student makes a mistake in an SQL statement, the system will generate the correct solution alongside the student’s solution to point out the error. A list of feedback is generated from SQL-Tutor to explain each of the mistakes in the student’s solution. 

The components of the systems include the interface, a pedagogical module and a student modeler. Figure 4 shows the architecture of SQL-Tutor. The pedagogical module generates feedback messages and selects practice problems. The instruction is individualized in the sense that both types of actions are based on the student model. The student modeler records the history of each constraint. This record contains information about how often the constraint was relevant for the ideal solution to the practice problems the student attempted, how often it was relevant for the student’s solution and how often it was satisfied or violated. This record is used by the pedagogical module. There is no domain model for the system. The domain knowledge is represented in the form of constraints in the student modeller. Currently, the system only deals with the SELECT statement in SQL. 

[image: image5.wmf] 

Student Model

 

Expert Model

 

Holes punched shows knowledge missing 

compared to the expert

 


Figure 4: The architecture of SQL-Tutor

COLER (Constantino-Gonzalez and Suthers, 2000) is a World Wide Web (WWW)-based computer-mediated collaborative learning environment for entity-relationship modelling.

An agent is designed for coaching the students in a collaborative learning environment. Students begin by constructing individual entity-relationship diagrams and then work in small groups to agree upon a group solution. 

COLER’s implementation is based on an architecture for intelligent collaborative learning systems of another software, Belvedere. The system was implemented in Java. The implementation concentrated on the coach module, which was built to monitor participation and to identify and evaluate differences between diagrams to encourage students to collaborate. COLER provides four different modes of operation in according to the type of user (student/professor) and the selected type of session (individual/group). The interface consists of a problem description window, a private workspace, a shared workspace and a chat window. The problem description window presents an ER modelling problem. Students construct their individual solutions in the private workspace. The shared workspace is used to construct collaborative ER diagram. The chat window is used by the students to communicate among themselves.  Each student’s clients contain a private coach, which monitors the private workspace of its students. The coach also monitors the shared workspace and record the students’ opinions in the workspace and in chat discussions. However, no natural language interpretation is attempted. 

There are no apparent domain module or tutoring module present in the system. A form of student monitoring is done in the coach module which consists of four sub-modules. The table below describes the function of each of the sub-module.

Sub-module
Function

Differences Recognizer
This module either finds differences specifically related to the currently added object or find all “extra work” that the student can contribute to the group.

Diagram Analyzer
This module detects ER diagram anomalies. Currently, it is only syntax-based.

Participation Monitor
This monitor attends to the activity in the group diagram. If a session is left idle for a period of time, it will report the event. It also monitors whether each student is participating (too much/ too little). It also tracks each student’s contribution.   

Personal Coach
This module receives feedback from other modules and generates potentially applicable advice and selects the advice to give, if any.

Table 1: Function of COLER’s coach sub-modules

The current version of the coach only has access to the student’s private workspace and the shared workspace.  A student is only able to compare his solution with the group’s solution only, not with a particular colleague. A future version will incorporate this feature to create opportunities for proper collaborative learning.    

Canavan (1996) developed a prototype for an intelligent tutoring system in database design, in the topic of  Normalisation for advanced GNVQ level students. The prototype was partially built as part of her investigation into how far intelligent computer aided instruction (ICAI) and intelligent tutoring system (ITS) can be brought to bear on the problems of education. The prototype was limited on the test and tutorial element of the ITS due to time constraint and limited resources.

Figure 5 shows the outline of the initial prototype. This is a menu-based system where users are presented with the appropriate screens during the tutoring session. To start with, the user is presented with an options menu which he may choose any of the nine tutorials or exercises. For the tutorial option, the user will be presented with some background information on the topic. He is then given the option of choosing an example or a question. If the question is answered incorrectly, the user is given the option to proceed to a tutorial before moving to a next topic. Ideally, the system should be able give some feedback or hint during the exercise, depending on the attempt the student makes. In addition, the system should direct the user to the appropriate material depending on his capability, rather than allowing the user to make the decision.


[image: image9.png]student
madels

Pedagoagical

N
madule

1]

database,
problems,
salutions

Interface

Student





Figure 5.Outline of the initial prototype structure (adapted from Canavan, 1996)

To summarize, several works have been presented which aim to provide a new approach towards learning in the area of databases. A comparison between these systems and the proposed IMSTD is presented in Section 4.2.1. Table 12 shows an analysis of the existing ITS in Databases with comparison to IMSTD.

2.3 Animated Pedagogical Agents

2.3.1 Introduction and Background

Animated pedagogical agents are the new paradigm for learning environments. This paradigm results from the merge of two distinct research areas (Johnson et al., 2000). The first area which is animated interface agents, provides a new way for communication in human-computer interaction based on face-to-face dialogue. The second distinct area, knowledge-based environments (Sleeman and Brown, 1982) incorporated artificial intelligence techniques into instructional software that can be adapted to individual learners. With a combination of these two ideas, a new type of software agent is produced: an animated pedagogical agent (Person et al., 2001).  

Previous work in knowledge-based learning environments has witnessed students interacting with computers through mixed initiative, tutorial dialogue where computers play the role as a coach (Burton and Brown, 1982) or learning companion (Chan, 1996). However, most of the work on tutorial and task-oriented dialogues has concentrated solely on verbal interactions. With animated pedagogical agents, nonverbal communications can be exploited. These agents are capable of performing actions and use locomotion, gaze and gestures to focus the student’s attention. Feedback through head nods or facial expressions on student’s utterances and actions can be given without disrupting the student’s thought. These nonverbal actions are a natural component of human dialogues (Johnson et al., 2000). The sheer presence of a lifelike agent may increase the student’s arousal and motivation to perform the task well (Lester et al., 1997b). Two prominent advantages that these agents present over earlier work includes increased bandwidth of communication between students and computers and increased ability of computers to engage and motivate students (Johnson et al., 2000).

Animated agents can be classified into single and multiple agents. Below are several implemented agents described in their classes with the key capabilities they offer. 

2.3.2 Single agent 
Adele (Agent for Distance Learning: Light Edition) has been developed by The University of Southern California Information Sciences Institute’s Center for Advanced Research in Technology for Education (CARTE).  Adele (Shaw et al., 1999) runs in a student’s Web browser and is designed to integrate into Web-based electronic learning materials. The University of Southern California and the University of Oregon have developed Adele-based courses in the area of continuing medical education in family medicine and graduate level geriatric dentistry and further courses are planned (Johnson et al., 2000). 

In the medical domain, Adele tracks the state of a simulated patient. She knows when a student examines or questions a patient. When a question is asked, she is able to provide answers to the student. Adele is capable of pointing towards objects on the screen and directs her gaze toward them. In addition, she nods or smiles to agree with a student’s action, presents a look of puzzlement if an error is made and shows a pleasant surprise when a task is completed. All these actions help making a strong impression on the student. 

Three animated pedagogical agents have been developed by North Carolina State University’s IntelliMedia Initiative: Herman the Bug (Lester et. al, 1997a), Cosmo (Lester et al., 1997b) and WhizLow. Herman the Bug is an animated agent in Design-a-Plant, a “design-centred ” learning environment in which students learn about botanical anatomy and physiology by designing plants that will thrive in given environmental conditions. Herman is a talkative insect that dives into the plant structure while providing advice to students. Herman observes the students’ actions as they build plants and provides explanations and hints. He is capable of performing a broad range of actions including walking, flying, shrinking, expanding, swimming, fishing, bungee jumping, teleporting and acrobatics. These actions are performed by Herman when he is in the process of explaining concepts to the students. 

Cosmo, a life-like animated agent, inhabits a learning environment for the domain of Internet packet routing. He is a playful, antenna-bearing creature who moves about in the virtual world of routers and networks. He provides advice to students as they decide how to ship packets through the network to specified destinations. Cosmo gives explanation that refer to specific routers, subnets and address labels in the environment in response to the students’ questions. Cosmo provides real-time advice to students that is “deictically believable” as the students escort packets through the virtual interconnected routers. Deictic believability refers to the manner in which humans refer to objects in their environment through combinations of speech, locomotion and gesture; an animated agent should be able to act in the same manner. Their actions (gestures, motions and utterances) should be both natural and unambiguous (Lester et al, 1997b).  

The WhizLow agent, which teaches novices the fundamentals of computer architecture, inhabits the CPU City 3D learning environment. The environment represents a motherboard with three primary components: the random access memory (RAM), the central processing unit (CPU) and the hard drive. It focuses on architecture including the control unit and an arithmetic and logic unit (ALU), system algorithms such as the fetch cycle and the basics of compilation and assembly. WhizLow is capable of carrying out students’ tasks like picking up data and instruction packets and put them in the appropriate locations. He also manipulates address and data packets (Johnson et al., 2000). 

Another animated agent called PPP Persona (Andrĕ et al., 1997) has been developed at the DFKI (the German Research Center for Artificial Intelligence). PPP Persona may be used in a broad range of applications such as computer-based instruction, guides through information spaces and product advertisement over the Web. For example, this agent presents Web-based multimedia material to the user under the directives of a script. PPP Persona uses pointing gestures to attract the student’s attention to elements of Web pages and provides commentary via synthesized speech. The multimedia plan to be presented by the agent is generated by an underlying PPP system. The agent then executes the plan adaptively and modifies it in real time depending on the user actions.  The overall behaviour of  PPP Persona is partly determined by a presentation script and partly by the agent’s self -behaviour.  

Several projects have also been developed at MIT (Massachusetts Institute of Technology) such as Gandalf (Thorisson, 1997) and Real-Estate Agent (REA) (Cassell et. al, 1999). Gandalf is a software robot or humanoid that can interact with people using full multi-modal conversation. Like other systems, Gandalf combines speech, intonation, gaze, facial expression and a few gestures. A unique feature about Gandalf is that it can also perceive communicative signals in humans. In order to communicate with Gandalf, a user has to wear a suit that tracks their upper body movement, an eye tracker that tracks their gaze and a microphone that allows Gandalf to hear their words and intonation. Gandalf’s implementation provides proof-of-concept of new solutions to many difficult issues in multimodal dialogue, such as real-time back-channel feedback, flexible turn-taking and multimodal perception and action; all in one integrated system.

REA (“Real Estate Agent”) (Cassell et al., 1999) is an embodied conversational agent that is capable of both multimodal input understanding and output generation in a limited application domain. She can sense the user passively through cameras and audio input, and is capable of speech, intonation, facial display and gestural output.

Rea’s domain of expertise is real estate and she acts as a real estate agent showing features of various models of houses that appear on screen behind her. She is designed to conduct a mixed-initiative conversation. She responds to user’s verbal and non-verbal input, which may lead her to new directions in order to fit the user’s requirements of a house. Users wear a microphone for capturing the speech input and cameras are used to track the user’s head and hand positions in space. Rea is capable of initiating a conversation and allows herself to be interrupted and takes turn again when she is able. 

In order to be capable of handling such natural conversation, Rea uses a conversational model that supports multimodal input and output as constituents of conversational functions. The input and output is generated based on the discourse functions it serves.        
2.3.3 Multiple Agents 

In some learning environments, multiple agents are incorporated to enhance the learning in several ways. Some exist as virtual teammates to help carrying out complex tasks like the Steve agents (Rickel and Johnson, 1999). Others are embodied to increase student question generation during tutorial sessions such as the agents in AutoTutor (Craig et al., 1999). AutoTutor is currently designed to assist college students learn about topics covered in an introductory computer literacy course. Another concept, the troublemaker strategy is introduced in Duffy ITS (Abou-Jaude et al., 1999), an application that aims to capture the emotional status of the user. Some personified agents are also used to convey the categorical distinctions in the tutored domain like the Smalltalk Gurus (Alpert et al., 1999) that teaches Smalltalk programming. 

Steve (Soar Training Expert for Virtual Environments) has been developed by The University of Southern California’s Information Sciences Institutes Center for Advanced Research in Technology for Education (CARTE). Steve is designed to interact with students in networked immersive virtual environments, and has been applied to naval training tasks (Johnson et al., 2000). As mentioned earlier, Steve supports team training where the team can consist of any combination of Steve agents and human students. Each is assigned a particular role in the team. Each student is assigned an instructor (human or agent). In the virtual environments, the students can see the agents in stereoscopic 3D and hear them speak, and the agents rely on the virtual environment’s tracking hardware to monitor the student’s position and orientation in the environment. Steve is capable of providing interactive demonstrations like operating a High Pressure Air Compressor (HPAC) aboard a US Navy ship. He also provides navigational guidance to students to prevent them from becoming lost in a complex shipboard environment which has multiple rooms. He also uses gaze and gestures like pointing to an object or looking at it in assisting the students in their learning. All these features provide a visual focus and engaging presence compared to agent-less counterparts. 

AutotTutor, an application that has been designed to assist students learn about the Introductory Computer Literacy course, has been used in several studies which involves multiple agents. In one of the studies using AutoTutor, embodied agents are used to motivate students to ask questions, as they are notoriously deficient in it (Craig et al., 1999). This involved the student learner as an over-hearer rather than an active participant in a dialog during a tutorial session. The active participants were two animated agents, one as a virtual tutor and another as a virtual tutee. The research focused on two issues: (a) the extent to which over-hearers extracted information from monologues and dialogues in a virtual tutoring session and (b) the extent to which over-hearers were induced to ask questions following exposure to either form of communication (monologue or dialogue). The research revealed that over-hearers exposed to a virtual dialogue tutoring session retain more information than those exposed to the monologue session (Craig et al., 1999).

In another study using Auto Tutor, multiple agents used in the system are concerned with source monitoring. Source monitoring refers to the ability to remember the source of a given statement (Craig et al., 1999). This study involves three agents: a tutor, a book reader and a virtual tutee. The participant overheard a dialogue among the three virtual agents and was asked to decide whether a statement was previously heard. If a statement was previously heard, they were asked to identify the agent (tutor, book reader or tutee). The study showed that participants were reasonably good at discriminating previously heard utterances from new statements. However, they showed little ability to discriminate one source from another. Otto Tudor, the animated agent used in the studies of Auto Tutor, conveys various emotional states in response to student actions. This includes raising and lowering eyebrows, widening and narrowing eyes and other facial expressions. The agent also uses movements of the head, the hands and the arms to indicate or point to various locations of static and animated graphic displays. The arms and hands are also used for various gestures to extract information from the student learner. 

Smalltalk Gurus, tutorial agents of the Molehill intelligent tutoring system, are used for teaching Smalltalk programming. They provide instructional support to novice Smalltalk programmers as they attempt to solve programming problems in an interactive development environment. They respond to user-requested help as well as offering unsolicited remediation for poor user plans in a multimodal manner. When providing instruction, the information domain being addressed is to be highlighted. Thus, this tutoring system employs the organizational strategy of multiple gurus for multiple sub-domains. The reason is to reflect the categorical distinction in the to-be-learned material in the manner in which it is presented. The goal of this approach is to support the novice who is overwhelmed with the information to be digested when first encountering a new domain. Molehill employs two agents:  the Language guru and the Interface guru.

The gurus are personified using different visual appearances to differentiate between them. Different symbolic emblems are placed on their shirts and they have different voices to match their appearances – the Language guru has a woman’s voice while the Interface guru a man’s. The gurus appear as “talking heads” when they introduced themselves. They have the capabilities of moving their arm and eyes toward the screen to direct the user’s attention. Apart from that, they can provide instructive demonstration when requested. However, their types of interaction are rather limited. 

In Duffy ITS (Abou-Jaude et al., 1999), an application that aims to capture emotional status of the user, it introduced a troublemaker alongside a tutor. The purpose of having the troublemaker is to evaluate the role of emotions of the user. The troublemaker plays considerably on the emotions of the user. However what he can do is either reduce the happiness of the user  by providing him wrong answers while answering in a good way himself. Or he may reinforce the positive feelings in the user by helping him and playing the role of a companion. It is believed that emotion plays a role in making learning efficient or otherwise (Abou-Jaude et al., 1999).  

Table 2 presents an analysis of the agents’ capabilities in terms of the types of interaction they conduct with users. The classification of the types of interaction are based on Johnson et. al. (2000). Interactive demonstrations refers to the ability of the agent to demonstrate physical or non-physical tasks like repair of equipment or carrying out computational procedures. Navigational guidance means guiding and leading the user to a specific location in the learning environment. Gaze and gestures represents the agent’s capability to point to objects, look at them and perform other body languages which may occur naturally in humans. This is also referred to deictic behaviours. 

Single Agent

Types of Interaction



Interactive

Demonstration
Navigational Guides
Gaze and gesture
Verbal feedback
Nonverbal feedback
Conversational signals
Emotion






Input
Output





Adele


(

(
(




Herman 

the Bug




(
(




Cosmo
(

(

(
(

(


WhizLow
(
(


(





PPP Persona

(
(

(





Gandalf


(
(
(
(
(



Rea

(
(
(
(
(
(



Ejen (in IMSTD)


(

(
(



Multiple Agent
Steve
(
(
(
(
(
(
(



Otto Tudor (in Auto Tutor)


(

(


(


Smalltalk gurus
(

(

(




Table 2. An Analysis of Agents with the Types of Interaction They Offer

Verbal feedback is divided into two categories. The first category, Input refers to the ability of the agent to receive verbal input from users. The Output category refers to the ability of the agent to give verbal feedback to users. Nonverbal feedback may be a nod of approval to show agreement, a shake for disapproval, a smile, a look of puzzlement and other facial expressions to provide feedback to students without disrupting their train of thought. Conversational signals are usually employed help to regulate the conversation and complement verbal utterances. Some are closely tied to spoken utterances like the intonation and pitch of the voice. Facial displays can sometimes accompany the spoken utterances like scrunching the nose to show distaste or movement of the eyebrows. Back-channel feedbacks such as head nods to acknowledge understanding are also a useful signal especially in tutoring systems that support speech recognition and speech output. Lastly, emotion is believed to play an important role in motivation (Johnson et al., 2000). An agent may encourage a student to care about her progress or it may convey enthusiasm for the subject matter. A pedagogical agent with an interesting and rich personality may simply make the learning more fun. An example of an emotive agent is Cosmo, which employs a range of “full-body” emotive behaviours to advise and encourage the students. Ejen, an agent to be implemented within IMSTD is also included in the analysis to compare its features with other agents. A brief introduction about Ejen is presented in the section 2.3.4.

In short, various capabilities of animated pedagogical agents is presented and reviewed. In many ways, the current state of the art represents the early developmental stages of what promises to be a new learning technology. It is believed that this new generation of learning technologies will have a significant impact on education.   

2.3.4 Ejen 
Ejen is an animated pedagogical agent that will be implemented within IMSTD. ‘Ejen’ means an agent in the Malay language. He will interact with the students and guide them during the tutorial session. Ejen’s interactions include gaze and gesture, verbal output feedback and nonverbal feedback. An example of gaze and gesture includes moving from one position to another and waving to the students at the end of a tutorial session. Verbal output feedback refers to Ejen’s ability in providing feedback verbally to the students during the interaction. Nonverbal feedback includes action such as blinking and smiling. Ejen will be implemented using Microsoft Agent.  

2.4 Natural Language Processing 

2.4.1 Brief Overview of Natural Language Processing (NLP)
Natural language processing is a process of developing a computer system that communicate with their users through natural language (Shapiro, 1992). Generally, natural language processing follows three stages: parsing, semantic interpretation and contextual/world knowledge interpretation (Luger and Stubblefield, 1998; Allen, 1987). 

The first stage, parsing, analyses the syntactic structure of sentences. Parsing not only verifies that sentences are syntactically well formed, but also determines their linguistic structure. This is to ensure that the sentence is a legitimate sequences of words in a language.  This phase identifies major linguistic relation such as subject-verb, verb-object and modifier. This is often represented as a parse tree. The parser employs knowledge of language syntax, morphology and some semantics. An example of a parse tree for the sentence “The man likes the car” is shown in Figure 6.

[image: image6.wmf] 

User Interface

 

Domain Model

 

Knowledge

 

Expertise

 

Tutor Model

 

Knowledge

 

Didactics

 

Student Model

 

Knowledge

 

Diagnosis

 


Figure 6. Parse tree for the sentence “The man likes the car”

Research at the syntactic level of analysis has been primarily concerned with the construction of wide-coverage grammars, efficient parsing strategies and grammar formalisms (Neri and Saitta, 1997). These have led to the development of grammars like structure grammars, context-free grammars, context free grammars and context-sensitive grammars. 

The second stage is semantic interpretation, which produces a representation of the meaning of the text.  This stage focuses on questions such as what type of knowledge representation formalism and how to interpret things like:

“I saw her painting ”

Which could mean any of the following:

a) “I saw her painting the wall”

b) “I saw her painting (art) at the gallery”

The final stage involves adding structures from the knowledge base to the internal representation of the sentence to produce an expanded representation of the sentence’s meaning. This adds further world knowledge required for complete understanding. Some examples of the world knowledge are facts such as the man likes Jaguar, Jaguar is not an animal  and Jaguar is a car. This resulting structure represents the meaning of the natural language text and is used by the system for further understanding.   

2.4.2 Part of Speech (POS)Tagging

Part of speech tagging means assigning each word in an input sentence its proper part of speech like noun, verb and determiner to reflect the word’s syntactic category (Brill, 1992). However, words can belong to different syntactic categories. An example below illustrates the problem:

She books two tickets for the show.

She reads a book written by Agatha Christie. 

In the first sentence, the word “books” refers to a third person singular verb. But in the second sentence, “book” here refers to a plural noun. A part of speech (POS) tagger should segment a word, determine its possible readings and assign the right reading in the given context.

The architecture of a POS tagger basically consists of three major components: a tokeniser, a morphological analyzer and a morphological ambiguator. Table 3 below summarizes the function of each of the components.

Component
Function

Tokeniser
Segmenting the input texts into words and sentences. Text tokens segmented by the tokenizer are essentially just strings. An example of a string is “book”.

Morphological analyzer
Classifying string-tokens as word-tokens with sets of morpho-syntactic features (such as number, case, gender, etc.). The word-tokens are then tagged with a set of possible part of speech tags. For example, a singular noun can be tagged as NN and a verb as VB. Where more than one tag can be assigned for a word (as in the case of “book”), the classifier returns a set of possible POS-tags, known as POS-class.

Morphological ambiguator 
Chooses a single part of speech tag according to the context. There are two main approaches to part of speech disambiguation : the connectionist     (stochastic and neural net) approach and rule-based approach. Stochastic approach uses statistical techniques as opposed to rule-based approach which uses rules to assign tags to unknown or ambiguous words.

Table 3: Function of the components of a part of speech tagger

The end result of the part of speech tag process, regardless of the disambiguation approach, may have a form like below:

She/PRP books/NNS two/CD tickets/NNS for/IN the/DT show/NN ./.

The part of speech tag for each word is given after the forward slash (/) symbol. Table 4 below shows the meaning of each of the POS tag associated with each word. 

Word
POS tag
Meaning

She
PRP
Personal pronoun

books
NNS
Noun, plural

two
CD
Cardinal number

tickets
NNS
Noun, plural

for
IN
Preposition or subordinating conjunction

the 
DT
Determiner

show
NN
Noun, singular or mass

Table 4. An example of a sentence after POS tagging process

The main challenge for researchers in this area is to achieve a close to 100% success rate in tagging the words correctly. The best result presented so far is approximately 97.5% from Brill’s tagger (Agarwal, 1995). With such a high accuracy, Brill’s tagger has been selected for this research work.

Brill’s tagger

Brill (1995) introduced a simple rule-based approach to corpus-based natural language learning known as transformation-based error-driven learning (TBL). The approach has been applied to POS tagging and has demonstrated that the transformation –based approach obtains competitive performance with stochastic taggers on tagging both unknown and known words. The transformation-based tagger captures linguistic information in a small number of simple non-stochastic rules, as opposed to large numbers of lexical and contextual probabilities. 

The learning algorithm is a mistake-driven greedy procedure that produces a set of rules. It works iteratively by adding at each step the rule that best repairs the current errors. Concrete rules are acquired by instantiation of a predefined set of template rules. 


[image: image2.png]UNANNOTATED
TEXT

INITIAL
STATE

ANNOTATED
TEXT

TRUTH

LEARNER

RULES





Figure 7. Transformation-based error-driven learning (adapted from Brill, 1995)

Figure 7 illustrates how transformation-based error driven learning works. First of all, unannotated text is passed through an initial-state annotator. In part of speech tagging, the initial state annotator has been used to carry out various tasks which include the output of a stochastic n-gram tagger; labeling the words with their corresponding tags and naively labeling all words as nouns.   

The text will then be compared to the truth once it has been passed through the initial state processor. The truth here refers to a manually annotated corpus which is used as a reference. An ordered list of transformations is learned that can be applied to the output of the initial state annotator to resemble the truth. There are two important components to a transformation: a rewrite rule and a triggering environment. An example of a rewrite rule for part of speech tagging is as below (Brill, 1995):

Change the tag from modal to noun.

And an example of a triggering environment is :

The preceding word is a determiner.
The transformation of this rewrite rule and triggering environment associated with it, when applied to the word “can” would result in a change as below:

The /determiner can/modal rusted/verb ./.

to

The /determiner can/noun rusted/verb ./.

A greedy search is applied for deriving a list of transformations: at each iteration of learning, the transformation is found whose application results in the best score according to the objective of the function being used. For example, the objective may be to achieve the least number of errors in the annotated corpus compared to the manually derived annotations for the particular corpus like the Penn Treebank set. The transformation is then added to the ordered information list and the training corpus is updated by applying the learned transformation. Learning continues until no transformation can be found whose application results in an improvement to the annotated corpus.   

In conclusion, this section has presented a brief overview of natural language processing (NLP). Apart from that, a technique to extract linguistic information from a natural language text  known as POS tagging has also been reviewed. A specific POS tagger i.e Brill’s tagger is also discussed as this tagger will be used as part of the NLP in the proposed research project. 

2.4.3 Application of Natural Language Processing (NLP) in Databases

Natural languages have been the common tools for people to describe and communicate their understanding of the world. Because both the ER diagram and the natural languages satisfy similar human needs, their correspondence has been studied (Chen, 1983). Chen proposed some basic rules for translation between English sentences and ER diagrams. A summary of the basic translation rules is shown in Table 5. These translation rules  can be used in the conversion of an English language description of information requirements into ER diagrams. Though this mapping can be easily done by a human, there are certain limitations in machines which prevent them from carrying out this task. One of the reasons for this stems from the limitations of current technologies in NLP to match human knowledge, for example in identifying specific category for a word. For example the word “Pat Clooney” can be easily identified as a possible candidate for an entity but not easily identifiable by a machine. Thus, this mapping can only serve as a basis for a manual or semi-automatic process of transforming an English specification into an ER model (Chen, 1998).  

English Grammar
ERD Structure

Common noun
Entity type (a possible candidate)

Proper noun
Entity (candidate)

Transitive verb
Relationship type (candidate) 

Intransitive verb
Attribute type (candidate)

Adjective
Attribute for entity

Adverb
Attribute for relationship

Gerund (a noun converted from a verb)
An entity type converted from a relationship type

Clause
A high-level entity type which hides a detailed ERD

Table 5. Correspondence between English structure and ERD constructs (Chen, 1998)

Much work has attempted to apply natural language in extracting knowledge from requirements specification or dialogue session with designers with the aim to design databases (Buccholz et al., 1995; Eick and Lockemann, 1985; Tjoa and Berger, 1993; Tseng et al., 1992; Burg et al., 1996). The relevant tools and methodologies which specifically analyse natural language requirements as input for conceptual design are presented below.

Buchholz et al. (1995) developed a knowledge-based Dialogue tool in German for getting a skeleton diagram of an Enhanced Entity-Relationship (EER) model. This tool is part of a larger database design system known as RADD which consists of other components that form a complex tool. In order to obtain knowledge from the designer, a moderated dialogue is carried out during the design process. This moderated dialogue can be regarded as a question and answer session. During the session, the designer describes the structure of an application in natural language (German) and the dialogue tool reacts appropriately to every input sentence.  The result of the syntactic, semantic and pragmatic analysis will be used for controlling the dialogue. For example, if the designer’s input is incomplete, a question will be initiated by the system.

Once the knowledge is acquired through the dialogue, the input will go through the syntactic and semantic analysis. A special phrase structure grammar which uses the ID/LP format (Immediate Dependence/ Linear Precedence) has been developed for the syntactic analysis. The grammar formalism describes a part of the German language based on analyses of user-input. The grammar analyses main and subsidiary clauses, relative clauses, prepositional clauses and basic verb phrases. The lexicon contains lexeme and morphological rules. A special parser has also been implemented which uses the grammar as well as the lexicon and transforms the natural language input into syntax trees. The linguistic corpus was obtained by carrying out a number of interviews with librarians and library users (‘Library’ has been chosen as the domain knowledge base). It consists of more than 12,000 lexical units. Semantic analysis will then be carried out to identify the meaning of the sentences. A model of semantic roles based on Jackendoff’s hypothesis is used for this purpose. It consists of the following roles which refer to the objects partaking in the action: Cause, Theme, Result/Goal, Source, Locative, Temporal, Mode, Voice/Aspect. The roles of a sentence are used to clarify linguistic completeness and to support the extraction of the design. The following example shows the semantic roles of the sentence “The user borrows a book with a borrowing-slip”:

Verb type : verb of movement (borrow)

Cause (subject): the user

Theme (object): a book

Mode: with a borrowing-slip
The transformation of the structure of natural language sentences into EER model structures is a process which is based on heuristic assumptions and pragmatic interpretation. The aim of the pragmatic interpretation is the mapping of the natural language input onto EER model structure using the results of the syntactic and semantic analyses. Common rules are used for making general assumptions about how information gained from general sentences is related to entities, relationships, sets, keys and other EER structures. The results of the transformation processes are then transferred into a Data Dictionary which has been developed in the RADD database design system.

One major limitation in this system is that the accuracy of the EER model produced depends on the size and complexity of the grammar used and the scope of lexicon. An extension of the lexicon is necessary to ensure a high accuracy of the result. Another open problem is the ‘integrity’ of designer description of an application. A contradiction in the designer’s own views can be conflicting and affect the end result.     

Eick and Lockemann (1985) proposed concepts, methods and tools to support the extraction, integration, transformation and evaluation of terminological knowledge (obtained from natural language statements) that are based on database design techniques in a project called ANNAPURA. This project aimed at providing a computerized environment for semi-automatic database design from knowledge acquisition from the experts up to generating an optimal database schema for a given database management. Major work concentrated on the phases concerned with acquiring the terminological rules. ‘Terminology’ here refers to explaining a given term by means of other terms. The need for acquiring the terminological knowledge was driven by the fact that different experts and the knowledge designer himself use different terminologies and will represent rules concerning the same objects in a different way (Eick and Lockemann, 1985).   

The first step in acquisition of the terminological knowledge involves extracting the knowledge from queries and rules that have the form of natural language expressions. The queries and rules are usually obtained from a user group who are assumed to share the same terminological knowledge.  The knowledge obtained would then be put into the form of S-diagrams. An S-diagram is a graphical data model which can be used to specify classes (for example room and door), subclass connections between classes (for example rooms and doors are physical objects) and attributes. Figure 8 shows an example of an S-diagram. A tool, AISCHYLOS, which is part of the ANAPURA project, has been developed to generate S-diagrams from the grammatical structure of a natural language sentence using heuristic rules. 


[image: image3.png]Connect

ta_room by_door

frar_room

room ‘ door ‘ physical_object





Figure 8. An example of an S-diagram

Once the formalization is done using S-diagrams, complete collective S-diagrams have to be derived for each user group from the individual user groups (integration phase). To improve the process of knowledge integration, quality and similarity measures are used. A quality measure will put the S-diagrams to be integrated into a canonical form (by applying S-diagram transformations). This process guarantees that entities with similar structural properties will be described in the same way and entities that are structurally different will be represented in a different way. Similarity measures are used to detect synonyms, homonyms and subclasses. The limitation of the above work is that the use of S-diagrams performs best when the complexity is small. 

Tjoa and Berger (1993) designed a tool called Data Model Generator (DMG) which transforms requirement specifications in natural language into concepts of EER model. The transformation is based on the assumption that syntactic structures of language can be translated into data modelling concepts. German is chosen as the input language. 

DMG is a rule based design tool which maintains rules and heuristics in several knowledge bases. A parsing algorithm which accesses information of a grammar and a lexicon is designed to meet the requirements of the tool. During the parsing phase, the sentence is parsed by retrieving necessary information from the grammar, represented by syntactic rules and the lexicon. Word categories, word phrases and semantic roles are constituents which describe the sentence at different level of detail. The syntactic structure of the sentence is represented graphically as a parse tree or by the flat structure of the linguistic concepts in the Linguistic Base. The parsing results are processed further on by rules and heuristics which set up a relationship between linguistic and design knowledge. The DMG has to interact with the user if the lexicon does not exist yet or the input of the mapping rules is ambiguous. The linguistic structures are then  transformed by heuristics into EER concepts. 

Tseng et al. (1992) studied the inter-relationship between natural language constructs and the Entity-Relationship (ER) conceptual schema. A methodology is presented whereby it maps natural language constructs (in terms of queries) into relational algebra through ER representation. The mapping is done by referring the corresponding verbs and nouns to the data dictionary A logical form is developed by extending the ER representations to capture natural language semantics. This logical form can also be represented in a form similar to ERD and can be transformed into the relational algebra. The natural language conjunctives ‘and’ and ‘or’ are mathematically analysed in this study. However, the data dictionary has to be changed every time a new database is used. 

This section has reviewed some tools and methodologies which apply natural language processing in databases. An analysis of the existing tools that apply natural language processing in databases is shown in Table 13.  The methodologies reviewed are omitted from the table as the table aims to show a comparison between the existing tools and IMSTD. 

� EMBED Word.Picture.8  ���





� EMBED Word.Picture.8  ���























PAGE  
45

[image: image7.wmf] 

Student Model

 

Expert Model

 

Holes punched shows knowledge missing 

compared to the expert

 

[image: image8.png]Sentence

T

Noun_phrase Verb_phrase
Aticle Noun Verb Noun_phrase
Aticle Noun

The man likes the car




_1040203741.doc
[image: image1.png]





Student Model







Expert Model







Holes punched shows knowledge missing compared to the expert












_1048689835

_1035207465.doc
[image: image1.png]





User Interface







Domain Model







Knowledge



Expertise







Tutor Model







Knowledge



Didactics







Student Model







Knowledge



Diagnosis












