3. ANALYSIS

3.1 Questionnaire Analysis

3.1.1 Introduction

A survey was carried out to determine the difficulty of the Databases subject, particularly in the areas of Data Modelling. Questionnaire method was used in this survey. The questionnaire can be seen in Appendix A.

The survey was carried out in the School of Computer Science at the Queen’s University of Belfast. 39 students participated in this study. They were doing the Masters course in Computer Science and Applications, a computing course for graduates with primary degrees in disciplines other than Computer Science. The questionnaires were distributed during the Databases lecture. At that time, they had gone through lectures in ER modelling and Normalization and had some practical exercises on those subjects.

The results of the questionnaires were analyzed using a statistical package, SPPS 9.0 for Windows. The main strength of SPSS is its ability to manage a complex data set once the location and meaning of variables have been defined. It also does some types of analysis very well, and it provides many types of analysis which are not available in other package programs (Gray et al., 1998). However, first time users do find that it is extremely complex (Green et al., 1997).

3.1.2 Results and Discussion

The majority of the participants (71.8%) had more than 3 weeks of experience in using databases. 81.6% of the participants had used INGRES, a database management system (DBMS) as part of the exposure in gaining the necessary skills in databases. Most of the participants (92.3%) have used SQL as one of the query languages in databases.

When asked about the importance of the Database systems course, 56.4 % agreed that it is important while 25.6% of them think that is a very important subject. Thus, it can be concluded that the majority of the students admit that the Database course is one of the important subjects in computing. Formal database courses are needed for proper training of database designers who would ensure a proper database design and this stage is very critical (Carpenter, 1992).

The participants were asked to rate the difficulty of the subjects in Databases on a scale of very easy (1) to very difficult (4). Table 6 below shows the result obtained:

	Subject
	Very difficult
	Difficult
	Easy
	Very easy

	Introduction to Databases
	-
	7.7
	76.9
	7.7

	Entity-Relationship Modelling
	-
	48.7
	48.7
	2.6

	Normalization
	12.8
	71.8
	12.8
	2.6

	The Relational Model
	-
	71.8
	25.6
	2.6

	SQL
	2.6
	41.0
	48.7
	5.0

Table 6: Percentage of the difficulty of the Databases subject

Two of the remaining subjects included in the study to determine its difficulty i.e. Relational Algebra and Calculus and File Organization and Storage Structures were omitted as the students were still having or have not had the lectures yet at the time the questionnaire were distributed.

With regards to the ER Modelling, nearly half of the students find the topic difficult. In Normalization, 71.8% finds that the topic is difficult whereas another 12.8% of the participants find it very difficult. The participants were also asked a few questions on general understanding of both subjects. When asked whether they understand the basic concepts about entities, relationships and attributes, 74% of them find the concepts clear to them. However, when asked about their ability to construct an ER model in a given problem, only 31% reported that they are able to do it most of the time. Another 59% could do it sometimes while 10% reported that they are seldom capable of constructing it. 74% of them scan the sentences for nouns and verbs and etc. when they are determining the entities and relationships in an ER. This is an important source of information as it provides some knowledge on how a similar task could be performed by an intelligent tutoring system in assisting the students to derive an ER model.

Similar questions were asked regarding the topic of Normalization. Half of the participants (51.3%) reported that they were unclear about the concepts of functional dependency, one of the important elements in Normalization. Without such understanding, it is not surprising to know that 59% of them can seldom undertake the process of normalization. Only 13% of them could do it most of the time.

From the results above, it is clear that some sort of help is needed to assist the students in understanding the important concepts in Database Systems course, especially those involving practical skills like ER Modelling and Normalization. An intelligent tutoring systems in these areas is deemed to be a suitable solution to fill the need. All of the participants involved (100%) agree that such a system would be useful to them.

3.2 Analysis of Development Tools

An analysis of development tools for IMSTD has begun early in the research. As the research progresses and more need arises, the search for the right combination of tools will be ongoing. However, several potential tools have been identified. As IMSTD is composed of several components with different tasks to accomplish, important issues like the integration of the selected tools are seriously considered. There are basically three types of tools that are needed for the prototype to demonstrate its tasks:

· A tool to provide the learning environment for IMSTD which comprises of the three basic modules of ITS: domain module, student module and the tutoring module

· A tool to develop an animated agent which will interact with the student

· Brill’s tagger which will tag the words in the ER problem before further transformation processes can be done

While intelligent tutors are becoming more common and proving to be increasingly effective, they are difficult and expensive to build (Murray, 1999). Commercial authoring systems commonly used to build traditional computer aided instruction (CAI) and multimedia-based training are claimed to lack the sophistication required to build intelligent tutors (Murray, 1999). Thus, several research projects have concentrated on developing ITS shells to assist developers in building ITS. Table 7 shows a summary of these shells according to their category.

	CATEGORY
	EXAMPLE SYSTEMS

	Curriculum Sequencing and Planning
	DOCENT, IDE, ISD Expert, CML

	Tutoring Strategies
	Eon, GTE, REDEEM

	Device Simulation and Equipment Training
	DIAG, RIDES

	Domain Expert System
	Demonstr8, D3 Trainer, Training Express

	Multiple Knowledge Types
	CREAM-Tools, DNA, ID-Expert, IRIS, XAIDA

	Special Purpose
	IDLE-Tool/IMap, LAT

	Intelligent/Adaptive Hypermedia
	CALAT, GETMAS,Interbook,Metalinks

Table 7: ITS Authoring Tools by category (adapted from Murray, 1999)

An attempt has been made to obtain one of these ITS shells, i.e REDEEM (Major et al., 1997) for the purpose of building the prototype of Intelligent Multimedia System for Teaching Databases (IMSTD). Unfortunately, it is not available for distribution, even for educational purposes. In fact Eon and most other shells are merely research projects that are not robust enough for external use and not available as such. Thus, a decision has been made to use Macromedia Authorware (Schifman et al., 1999).

3.2.1 Macromedia Authorware

Macromedia Authorware is a rich-media authoring tool. It adopts an iconic/flow control approach. Icons are Authorware's course building blocks and are presented for selection from a toolbox on-screen. The order in which icons are positioned on a flowline determines the order they are executed and presented to a student. With regards to IMSTD, Authorware will be used to create the learning environment and the ITS components: domain module, student module and the tutoring module.

Authorware has approximately 250 system variables and enables developers to create their own user variables. The system variables are divided into several categories for ease of use. Related variables are grouped together in a category. For example, all system variables that deal with the date and time are contained in the category Time. Like variables, there are also around 350 system functions in Authorware. While variables hold information, function act on information. User functions are contained in external files and can generally be written in C, Visual Basic or another package capable of creating Windows Dynamic Link Libraries (DLLs). In addition, user functions can be contained in Xtras that are also written in an external language.

One important feature about Authorware is that it has the ActiveX support. ActiveX is a Microsoft standard for software building blocks that can be used in a wide assortment of software development environments including Visual Basic, Delphi, C++ and Authorware (Schifman et al., 1999). Through ActiveX, application in Authorware can be enhanced by having interactive objects, all based on a common standard and therefore able to work together. In IMSTD, the ActiveX capability is needed to bring the pedagogical agent from another software i.e. Microsoft Agent into the application. A summary of some selected features of Authorware are shown in figure 9.

	Feature
	Function

	Knowledge objects
	Knowledge Objects are pre-built templates with wizards that drastically cut development time. It can be used to accelerate authoring tasks large and small, from creating application frameworks and quizzes to installing fonts or locating a system's CD-ROM drive. Advanced authors can create their own Knowledge Objects to simplify and automate authoring processes for subject matter experts or production authors.

	External Content

	Authorware developers can store media externally and easily manage those links with the external media browser. External content can be updated quickly and easily without having to modify the Authorware application itself. Hybrid applications can also be created that combine internal media with external links.

	Built-In Data Tracking

	Courses created with Authorware can now communicate with a wider range of learning management systems. Authorware's data tracking capabilities have been updated to track data to learning management systems that comply with the Aviation Industry CBT Committee (AICC) 2.0 specification. Authorware also supports JavaScript URLs to communicate with learning management systems that support the Advanced Distributed Learning Initiative's (ADL) JavaScript-based, run-time API for data tracking.

	ActiveX Support

	Authorware makes it easy to integrate ActiveX controls by displaying properties, methods, events, and other information for each control. Thousands of existing ActiveX controls or user’s own can be created to add custom functionality.

	Scripting Language
	Authorware provides a simple and flexible scripting language for performing a range of programming functions—from arrays and math functions to media manipulation and data tracking. Functions and variables windows assist authors with the parameters and syntax of the Authorware Calculation language. A new Enhanced Calculation Editor provides syntax highlighting, formatting, and other scripting productivity features.

Figure 9: Some features in Authorware

3.2.2 Microsoft Agent

Microsoft® Agent is a set of programmable software services that supports the presentation of interactive animated characters within the Microsoft Windows® interface. The characters can be used as interactive assistants to introduce, guide, entertain, or otherwise enhance applications in addition to the conventional use of windows, menus, and controls. In addition to mouse and keyboard input, Microsoft Agent includes optional support for speech recognition so applications can respond to voice commands. Characters can respond using synthesized speech, recorded audio, or text in a cartoon word balloon.

The conversational interface approach facilitated by the Microsoft Agent services does not replace conventional graphical user interface (GUI) design. Instead, character interaction can be easily blended with the conventional interface components such as windows, menus, and controls to extend and enhance the application's interface.

Microsoft Agent's programming interfaces make it easy to animate a character to respond to user input. Animated characters appear in their own window, providing maximum flexibility for where they can be displayed on the screen. Microsoft Agent includes an ActiveX® control that makes its services accessible to programming languages that support ActiveX, including Web scripting languages such as Visual Basic® Scripting Edition (VBScript).

3.2.2.1 Microsoft Agent’s components

Figure 10 below gives a summary of the separate components of Microsoft Agent. Most of these components are essential for the successful development of the agent while some, like the speech recognition engine, is only needed where such a facility is required in the system.

	COMPONENT
	USE

	Language components (DLLs)
	add dialogs, windows, tooltips, and balloon text in a selected language to the U.S. English core components.

	Microsoft Agent character files
	The characters or agent that will be used in the application. Some examples are Peedy (a bird) and Robby (a robot). User customized characters are allowed.

	Text-to-speech engines
	Text-to-speech engines provide speech output capabilities for Microsoft Agent and the Agent Character Editor

	Microsoft SAPI 4.0a runtime binaries
	The SAPI 4.0a runtime binaries is needed since the

characters are compiled to use the L&H TruVoice engine as the default speech output engine.

	Speech recognition engines
	Speech recognition engines provide speech input capabilities for Microsoft Agent. At this time Microsoft provides a single U.S. English

speech recognition engine for use with Microsoft Agent.

Figure 10: Components of Microsoft Agent

3.2.2.2 Microsoft Agent Programming Interface Overview

The display and animation of animated characters is supported through the services provided by the Microsoft Agent API. Microsoft Agent, which is implemented as an Object Linking and Embedding (OLE) Automation (Component Object Model [COM]) server, enables clients or client applications to host and access its animations, input and output services at the same time. A client can be defined as any application that connects to Microsoft Agent’s COM interfaces.

Microsoft Agent also includes an ActiveX® control. This control enables easy access to Microsoft Agent’s services from programming languages that support the ActiveX control interface.

3.2.2.2.1 Animating a character

Microsoft Agent provides a set of characters that can be downloaded from the Microsoft Agent Web Site at http://www.microsoft.com/msagent/characterdata.asp. Some of the characters include Merlin (a sorcerer), Robby (a robot) and Peedy (a bird). Apart from that, characters may be created using any rendering tool to create images, provided that the end result is a Windows bitmap format file. The Microsoft Agent Character Editor tool can be used to assemble and compile a character’s images into animations. This tool can also be used to define the character’s default properties and define animations for the character. An example of a character is shown below in Figure 11. The character, known as Ozzar is one the compatible agents created to be used within the Microsoft Agent by Argo Technologies Inc. Ozzar has 101 animations such as Acknowledge, Blink, Congratulate, Glance, Move, Wave and Reward. In addition, he has five looping animations i.e Processing, Processing2, Reading, Searching and Writing.

[image: image1.png]

Figure 11 : Ozzar

Microsoft Agent enables several methods for animating a character. Figure 12 shows some of the functions that can be used to bring a character into life.

	Function
	Action

	Show
	Makes the character’s frame visible

	Play
	Results in a moveable graphic image, or sprite, displayed on top of the desktop or all windows or z-order

	Speak
	Enables the character to speak (from given text), automatically lip-synching the output

	Hide
	Hides a character

	MoveTo
	Position a character at a new location

Figure 12: Function to animate a character

An example of scripting of Ozzar’s animation is showed in Figure 13:

Ozzar.Show

Ozzar.TTSModeID = "{CA141FD0-AC7F-11D1-97A3-006008273000}"

Ozzar.Play "Acknowledge"

Ozzar.Speak "Hello..nice to meet you. My name is Ozzar. What do you think of me?"

Ozzar.Speak "OK.. bye for now. See you again sometime."

Ozzar.Play "Wave"

Ozzar.Hide

Figure 13: Ozzar’s scripting

3.2.2.2.2 Speech Input Support

Microsoft Agent also includes direct support for speech input in addition to mouse and keyboard interaction. This speech input is based on Microsoft SAPI (Speech Application Programming Interface). Microsoft Agent can be used with speech recognition commands and control engines that include the SAPI-required support.

The user can initiate speech input by pressing and holding the push-to-talk Listening hotkey. In this mode, when the speech engine receives the beginning of the spoken input, the audio channel is opened until it detects the end of the utterance. However, when it does not receive any input it does not block the audio output. This means that the user is able to issue multiple commands while holding down the key, and the character can respond when the user is not speaking. The Listening mode times out once the holding key is released.

3.2.2.2.3 Synthesized Speech Support
In addition to supporting the animation of character and speech recognition, Microsoft Agent also supports audio output for the character. This includes spoken output and also sound effects. When a character speaks, the server automatically lip-syncs the character’s defined mouth images to the output.

3.2.2.3 Microsoft Agent with Macromedia Authorware

Microsoft Agent makes its services accessible to programming languages that support ActiveX, but unfortunately the ActiveX Sprite Xtra in Authorware doesn't support object collections. A 32-bit User Code Document (UCD) which acts as a "wrapper" for Microsoft Agent is available at http://www.stefanvanas.com/ which enables the integration with Authorware. The latest version supports multiple characters on screen at the same time and is based on Microsoft Agent 2.0.

3.2.3 GATE

Other alternative tools have also been considered. One of them is GATE, which is considered for the natural language processing of the ER transformation tool; specifically in part-of-speech tagging.

GATE (a General Architecture for Text Engineering) is a software infrastructure on top of which heterogenous NLP processing modules may be evaluated and refined individually or may be combined into larger application systems (Cunningham et al., 1997). GATE is like a shell, where a whole spectrum of language engineering (LE) modules and databases can be plugged. The emphasis of GATE is reuse, not reimplementation, as components used within GATE are likely to be already exist.

GATE comprises of three principal elements:

i) GDM

GDM, the GATE document manager is an object oriented database for storing information about the corpus texts. In this model, documents are not treated as texts; rather a document is a repository about texts. The information about a text is stored in the form of annotations. Annotation has a type (eg. token), set of spans (byte offset position in the text) and a set of attributes (for example part-of-speech or name_type). This database is based on the TIPSTER document architecture (Grishman, 1996).

ii) CREOLE

CREOLE is a Collection of Reusable Objects for Language Engineering. It is a library of program and data resource wrappers, that allow developers to interface externally developed programs/resources into the GATE architecture.

iii) GGI

GGI stands for GATE Graphical Interface. It is a graphical tool shell for describing processing algorithms and viewing and evaluating results.

The central interest of using GATE is the linguistic processing that can be carried out within it. Such processing is accomplished by one or more modules organized into systems for performing some specific task. Such tasks may include part-of-speech tagging, parsing or translation. Since GATE is not specific to any theoretical nor application area within LE or NLP, developers are free to develop or investigate any specific approaches or application that they wish.

All the real work of analyzing texts in a GATE-based system is done by CREOLE modules or objects. Typically, a CREOLE object will be a wrapper around a pre-existing LE module or database. For example, this may be a parser or a tagger. Alternatively, the object may be developed from scratch. The object has to provide a standardized API (application programming interface) to the underlying resources which allows access via GGI and I/O via GDM. The CREOLE APIs may be used for programming new objects.

In view of IMSTD, the reusable feature provided by GATE means that Brill’s tagger can simply be re-used as it is already available as part of VIE (Vanilla Information Extraction) system in GATE. VIE originated from another system, LASIE, and it has been purposely used in GATE to demonstrate that GATE is a productive environment for distributed collaborative reuse-based software development. However, some serious consideration needs to be made in terms of integration with Authorware. So far, no technical help has been received from the technical people of GATE regarding this issue.

3.2.4 CPK NLP Suite

Another tool being reviewed for the selection of tools to be used within IMSTD is CPK NLP Suite. This review is carried out as part of the analysis of tools.

The CPK NLP Suite (Brønsted, 1999) has been designed with the main emphasis on spoken language understanding (syntactic/semantic parsing, generation of language models for recognition and etc.). The suite supports (reads and/or writes) a number of grammar formats defined for speech recognisers like Entropic’s GrapHvite (HTK standard lattice) as well as common unification grammar formats used in NLP.

The main concepts of this suite are:

· support for generally used NLP and recognition grammar formats rather than inventing new formats

· an open architecture that allow designers to interface their own dialogue managers

· addressing NLP-needs in both simple system-directed dialogue systems and sophisticated needs in user-directed systems

The suite comprises of 25 modules, each module has a name consisting a three-letter code denoting the grammar format and a four letter code denoting the what is done to or with the grammar. An example of the program is apspars where aps stands for Augmented Phrase Structure and pars stands for Parser. Figure 14 shows the program included in the suite.

	
	APS
	PTR
	PSG
	ICM
	VOC

	PARS
	Apspars
	ptrpars
	psgpars
	icmpars
	vocpars

	CONV
	apsconv
	ptrconv
	psgconv
	icmconv
	vocconv

	TREC
	apstrec
	ptrtrec
	psgtrec
	icmtrec
	voctrec

	TSLU
	apstslu
	ptrtslu
	psgtslu
	icmtslu
	voctslu

	SGEN
	apssgen
	ptrsgen
	psgsgen
	icmsgen
	vocsgen

Figure 14: Programs included in CPK NLP Suite

Table 8 shows a summary of each grammar format and program types contained in the suite.

	Grammar format
	APS
	APS stands for Augmented Phrase Structure Grammar. Generate semantic frames by i) with semantic mapping rules consisting of a condition in terms of a sub-tree to look for, and an action if the condition is met ii) extraction of frames from the top –node of the parse tree built during syntactic parsing.

	
	PTR
	PTR supports complex (nested) feature but does not include mapping rules. The extraction of the semantic frames is always created at the top node of the parse tree

	
	PSG
	Phrase Structure Grammar. A trivial symbol-based (non-unification based) context free grammar or “BNF” format that primarily serves teaching purposes

	
	ICM
	“Interpretation and Control Module” grammar format. Semantic actions can be associated with lexical rules. When used with speech recognition, semantic actions are ignored.

	
	VOC
	A recognition grammar network. The network may include non-terminals and may involve recursions.

	Program Types
	PARS
	A unification left-corner based parser which processes bottom up input with top-down filtering (left-corner dependencies) and left-to-right. The result of the syntactic parsing is one or more parse trees.

	
	CONV
	Grammar converter that derives syntactic speech recognition networks from the common internal feature based grammar representation.

	
	TREC
	A grammar constrained typed-text recogniser based on a standard linear Viterbi pattern-matching algorithm.

	
	TSLU
	“Textual” spoken language understanding: TREC and PARS combined

	
	SGEN
	A random sentence generator used for exploring the coverage of grammars.

Table 8: Grammar format and program types contained in CPK NLP Suite

CPK NLP Suite is admittedly a complex tool to be used within IMSTD (with a view of spoken dialogue). And there are also known ‘bugs’ and many ‘inconveniences’ as mentioned by Brønsted, 1999.

PAGE
60

