ARTIFICIAL COMMUNICATORS:
AN OPERATING SYSTEM CONSULTANT
BY

PAUL MC KEVITT, B.Sc. (Hons.)

A Thesis submitted to the Graduate School
in partial fulfilment of the requirements
for the Degree

Master of Science

Major Subject: Computer Science

New Mexico State Uniersity
Las Cruces, Ne Mexico

May 1988

Copyright © 1988 by Paul Mc éitt

“ Artificial Communicators: An Operating System Consultaathesis prepared by
Paul Mc Kewtt in partial fulfilment of the requirements for thegilee, Master of

Science, has been apped and accepted by the following:

William H. M atchett

Dean of the Graduate School

Yorick Wilks

Chairman of the Examining Committee

Date

Committee in charge:

Dr. Yorick Wilks, Chairman
Dr. John Barnden
Dr. Don Dearholt
Dr. Fred Richman

Dr. Roger Schvanesldt

Tiomnatear an tachtas seo do Phead®&o6ise, PeadaDg, Tara, Michél agus a én
daoine inEirinn agus inaiteanna nacli ar bhuail mé leo i rith mo shaoil. Is mar

gheall orthu €id a preagadh @ chun an taighde seo a@mnamh.

This thesis is dedicated to Peter, Rose, Peadar, Tara, Michael and many people in
Ireland and elsewhere that | have met throughout my life. Research and ideas have

been stimulated by those around me from the early years until now.

ACKNOWLEDGEMENTS

This thesi§lwas devdoped in the exciting surroundings of the Computing Research
Laboratoryt (CRL) under the direction of.DYorick Wilks. The work herein has

been presented to the Natural Language and Knowledge Systems Groups at the CRL
and audiences at international conferences. Computer Scientists, Psychologists, Lin-
guists, Philosophers and Mathematiciangehamde various interesting comments.

They are all to be thanked for suggesting loopholes and further work.

The project was initiated when Yorick Wilks asked me to hook up a natural
language parser and a UNIXt kvledge base. Little did he, or I, knathat the
project would grav, from just being a quick parser-database interface, into a theory
on hav to construct a natural language understander for an operating system consul-
tant. Theproject has desloped into a theory which was presented, undétation,
at theFirst International Vdrkshop on KnowledgRepresentation in the UNIX Help

Domain held at the Uniersity of California, Berkelg in December 1987.

| thank Yorick Wilks for being a constant guide in the completion of this the-
ory. He has been anxeellent promoter of this work and hasvays provided the
utmost encouragemeniThanks are also due to Derek Partridge who continually
shaved an interest in the research aaglggme an opportunity to publish a paper in

his latest book orArtificial Intelligence and Softwar Engineering (@l. 1) from

OThe research herein is currently under proposal to the Officevaf Rasearch
(ONR), the Air force Office of Scientific Research (AFOSR), Rome Aivdmp-
ment Center (RADC), P&T, and U S West Advanced Technologies. {lee all to
be thanked for considering this work for funding.

Tt The Computing Research Laboratory is a Center of Technical Excellence par
tially funded by the N& Mexico State Legislature as part of the Rio Grande
Research CorridorThis work was supported by a special research assistantship
from the Computing Research Laboratory.

T UNIX is a trademark of AT&T Bell Laboratories.

Ablex Corporation.

| thank my committee for puiding interesting discussion and argument on
my thesis. The suggested possible problems on a closing draft of the thesis. John
Barnden, Roger Schwneveldt, Fred Richman and Don Dearholt are certainly to be

commended for doing that.

The theory herein has been scrutinized by the Natural Language Group at the
CRL on magy occasions. Membersf that group, including Yorick Wilks, Jerry
Ball, Afzal Ballim, Dan Fss, ®ny Plate, Cheng-Ming Guo, Xiuming Huang, Brian
Slator and Sylvia Cand. De Ramykaonstituted a stimulating environment during
the pursuit of this research. Special thanks are due to David Farwell who guided me
from maury pitfalls and mineshaftaMike Coombs, Roger Hartye Chris Fields, Dan
Eschner and Eric Dietrich from the Knowledge Systems Group made interesting
comments when the work was presented to them.vé harked closely with
Stephen Hegner at the Waisity of Vermont and he has provided enlightening sug-

gestions.

| commend Ner Mexico State Uniersity (NMSU) for praviding me with the
excellent interdisciplinary researchveronment of the Science Building encompass-
ing the Departments of Computer Science, Psychology and Mathematics. | also
thank NMSU for recognizing this research througlaraing me theyaung Centen-

nial Reseacher Awardin this Centennial Year of Celebration.

VITA

January 9, 1964 — Born at Monaghan, Co. Monaghan, Republic of Ireland

1985 — B.Sc. (Hons.) in Computer Science vérsity College Dublin,

The National Uniersity of Ireland (NUI), Republic of Ireland

1986-1988 — Research Intern at the Computing Research Laboratory

Publications

Mc Kevitt, Paul (1988) ‘Artificial Communicators: An operating system consul-
tant; Master's Thesis Department of Computer Science, Dept. 3CU, Box

30001, N&v Mexico State Unuersity, Las Cruces, NM 88003-0001.

Mc Kewitt, Paul & Wilks, Yorick (1987) “Inference rules in an operating system
consultant, | n Preprints of the Fst International Workshop on Knowlezlg
Repesentation in the UNIX Help Domaidniversity of California, Berkley,

California, December.

(1987)Transfer Semantics in an Operating System Consultant: The for
malization of actions wolving object transfet Proceedings of Theehth
International Joint Conference on Artificial Intelligence (IJCAI-87), Wgl. 1

569-575, Milano, ItalyAugust.

Vi

Mc Kevitt, Paul (1987) “Natural language interfaces in computer aided instruction
— What happened before and after the 80s AICAI couproc. 4th Interna-
tional Symposium on Modeling and Simulation Methagipl®@niversity of

Arizona, Tucson, Arizona, January.

(1986)‘Formalization in an English interface to a UNIX database,
Memomanda in Computer and Cognitive Scien84CCS-86-73 Computing
Research Laborataripept. 3CRL, Box 30001, NeMexico State Uniersity,

Las Cruces, NM 88003-0001.

(1986)'Building embedded representations of queries about UNIX,
Memoranda in Computer and Cognitive Scien84CCS-86-72 Computing
Research Laborataripept. 3CRL, Box 30001, NeMexico State Uniersity,

Las Cruces, NM 88003-0001.

(1986)Selecting and instantiating formal concept frarhedlemoranda
in Computer and Cognitive ScienddCCS-86-71Computing Research Lab-
oratory Dept. 3CRL, Box 30001, Ne Mexico State Uniersity, Las Cruces,

NM 88003-0001.

(1986) “Object and action frames foarisfer Semantics, Memoranda
in Computer and Cognitive ScienddCCS-86-69 Computing Research Lab-
oratory Dept. 3CRL, Box 30001, Ne Mexico State Uniersity, Las Cruces,

NM 88003-0001.

Vii

Presentations

. Colloquia of Natural Language Work at the Computing Research Labqratory

October 1987.

. Knowledge Systems Group Seminar at the Computing Research Laboratory

Septemberl987.

. The Second Western Expert Systems Conference (WESTEX-87), Anaheim,

California, July 1987.

. Meeting with Dr Steve Hegner at the Uniersity of Vermont, Neember,
1986.

. AT&T on their visit to N&v Mexico State Uniersity, October 1986.

. Natural Language Group Seminars at the Computing Research Lahoratory

1986 and 1987.

Fields of Study
Major Field:

Computer Science, Operating Systems, Atrtificial Intelligence, Cuogrii-
ence, Planning, Inference, Knledge Representation, Natural Language Pro-

cessing, Beliefs.

viii

Abstract

Artificial Communicators:
An Operating System Consultant
by
Paul Mc Kewtt, B.Sc. (Hons.)

Master of Science in Computer Science
New Mexico state Uniersity
Las Cruces, Ne Mexico, 1988

Dr. Yorick Wilks, Chairman

ABSTRACT

Operating systems are computer programs whichvalkople to accomplish
various tasks on computer hardeg. Mary people find it difficult to learn he to
use computer operating systems. In the past, help has \e@abla from manuals
or computer ®perts. Haevever, manuals are very tedious to search through, and
computer experts are scarce. It is possible to build computer programs which com-
municate with people on various domaind/e cevdop a theoretical design for a
computer consultant which communicates with people in English. The consultant
will answer English questions on operating systems. The operating system consul-
tant embodies in its design theories of knowledge representation, inference, plan-

ning and natural language processing.

Table of Contents

List of Figures

CHAPTER 1: Introduction .

1.1. Learningoperating systems

1.2. Theessence of artificial consultants
1.3. Objectves of the thesis .

1.4. Oganization of the thesis .

CHAPTER 2: Designing consultant systems
2.1. Ealuation by criteria.

2.2. Types of operating system consultant.
2.3. Simplekeyword systems

2.4. Menu-basedystems

2.4.1. McDonal&k Schvaneeldt

2.4.2. Hayes& Szelely

2.4.3. Yler & Treu .

2.4.4. Billmers& Garifo

2.5. Limitednatural language systems .
2.5.1. Yun & Loeb .

2.6. Naturalanguage consultant systems .

o o N B e

B 8 B R B B

2.6.1. Hegner & Douglass
2.6.2. Wilensky et al.
2.6.3. Kemke.

CHAPTER 3: A knowledge representation

3.1. The elements of arepresentation

3.2. A representation for objects .

3.3. A hierarchy of objects

3.4. The representation of commands

3.5. The necessity of preference .

3.6. A dilemmain “weak’” versus‘‘strong”

3.6.1. Preconditions
3.6.2. Postconditions

3.7. Therepresentation of conditions

3.8. Linking preconditions to postconditions .

3.9. Actions and actors .

3.10. The correspondence between queries and knowledge
3.10.1. Concept description queries and knowledge
3.10.2. Dynamic queries and knowledge .

3.11. Alternative representations of knowledge

3.12. Thelimits of knowledge

Xi

16
17
17

19
19
20
21
23
26
27
27
28
29
30
32
32
32

37

CHAPTER 4: Somerulesof inference

4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.

Aneed for inference rules.
Alanguage for inference rules
Alanguage for representing actions
Thefirst rule of consequence .

Thesecond rule of consequence.

Inferencealirection and the meaning of implication.

Atheory and representation of query embedding .

Arule of composition

TheAND rule
TheOR rule
Thedistinction of AND and OR.
TheNo-consequence rule
Ajustification of the minimal-storage principle
Othemwork on representing inference.

Inferenceparallelism, and beliefs .

CHAPTER 5: Planningin parallel

5.1.
5.2.
5.3.
5.4.

Arecap on the rule of composition .
Pipingas composition
Redirectioras composition.

Limitationsof the rule of composition .

Xii

& 8 8 o @ oo & m B 8 & N & D oo &

@ o

g N N

5.5. A sdectiverule of composition. 716

5.6. A compositionrulefor pardlelism. 717
5.7. A compositionruleforforking 719
5.8. A composition hiecarchy 719
5.9. Other work on plan hierarchiesand pardle plaoning 83
CHAPTER 6: Meaningrepresentations. 85
6.1. The nature of queries about operatingsystems 85
6.2. A tutorial onthetheory of embedding 86
6.3. The components of ameaning representation 87
6.4. Embedded action representations 89
6.5. Null embedded queries {Ai}fi-03) - - - 90
6.6. Positively embedded queries ({Ai}is») - - 91
6.6.1. Explicitembedding. 9
6.6.2. Implicit embedding. 93
6.6.3. Shadowedembedding 9%
6.6.4. Theintricacy of redundant embedding. 95
6.6.5. Negatedembedding 97
6.7. Theselectionof knowledge 97
6.8. Meaning representation and surface structure 99
6.9. Other work on meaning representations 100
6.10. Embedded representationsareuseful 105

Xiii

CHAPTER 7: The OSCON system

7.1. Desigmrinciples

7.1.1. Theprinciple of separating understanding and solving
7.1.2. Ageneral consultant .

7.1.3. Representingrinciples as architecture .

7.2. Anoverview of the consultant .

7.3. Anoverview of the understander.

7.4. ThePlanCon program

7.4.1. Computinghe first rule of consequence

7.4.2. Computinghe second rule of consequence .

7.4.3. Computinghe rule of composition

CHAPTER 8: Conclusion

8.1. Summary

8.2. Consultatiomy artificial communication is useful .
8.3. Towads better consultants.

8.4. Detectiorof user misconceptions

8.5. Thenecessity of understanding caoxite .

8.6. Therepresentation of belief

References ..

Xiv

07
07
108
09
D9
10
11
12
16
16
17

20
20
ri
P2
P3
P3
P4
26

List of Figures

Figure 1.1. English queries on operating systems .

Figure 3.1. Object frame for protection type .

Figure 3.2. Object frame for user designator .

Figure 3.3. Instances of user designator

Figure 3.4. Hierarcnof file objects.

Figure 3.5. Relations from object hieraydior file .

Figure 3.6. Hierarchof objects to define parts of a file .
Figure 3.7. Snapshot from object hiergréar protection type .

Figure 3.8. Similarities between different operating systems

Figure 4.1. Definition of the first principle of deduction
Figure 4.2. Definition of the second principle of deduction .

Figure 4.3.A language for representing actions .

Figure 4.4.A command environment for the COPY command .

Figure 4.5. Definition of the first rule of consequence .
Figure 4.6. Application of the first rule of consequence
Figure 4.7. Definition of the second rule of consequence.
Figure 4.8. Application of the second rule of consequence .

Figure 4.9. Definition of the rule of composition .

XV

B 8 B B N ¥ NN

B & & d® X8 5 & & R

Figure 4.10. Application of the rule of composition
Figure 4.11. Definition of the AND rule

Figure 4.12. Application of the the AND rule
Figure 4.13. Definition of the OR rule..

Figure 4.14. Application of the OR rule

Figure 4.15. Definition of the no-consequence rule .

Figure 5.1.A recap on the definition of composition .

Figure 5.2. Applying the definition of composition.

Figure 5.3. Applying composition to LISTING and PRINTING
Figure 5.4. Applying composition to PRINT and REMB
Figure 5.5. Applying composition to WHO andORD-COUNT .
Figure 5.6. Computing quadruple composition.

Figure 5.7. Applying composition to redirection of input
Figure 5.8. Applying composition to redirection of output .
Figure 5.9. Applying composition to FIND-PROCESS and KILL.
Figure 5.10. Definition of the seleati ule of composition.
Figure 5.11. Definition of the parallel rule of composition .
Figure 5.12. Definition of the fork rule of composition

Figure 5.13.A graphic hierarci of composition

Figure 5.14. Equience of parallel and fork composition

Figure 5.15. Equwilence of parallel and general composition .

XVi

88 &€« oo ¢ u @

B R &8 ¥ o9 3 XN of ofl & & N A o o

Figure 5.16. Equivalence of selective and general composition .

Figure 6.1. Case structure for observing objects

Figure 6.2. Instantiated case structure for ** be”

Figure 6.3. Instantiated case structure for ** delete-obj”

Figure 6.4. Meaning representation exhibiting explicit embedding
Figure 6.5. Implicit embedding |

Figure 6.6. Implicit embedding Il .

Figure 6.7. Shadowed embedding .

Figure 6.8. Redundant embedding |

Figure 6.9. Redundant embedding |1

Figure 6.10. Negated embedding

Figure 7.1. Precondition set for PRINT

Figure 7.2. Postcondition set for PRINT .

Figure 7.3. Action set for PRINT .

Figure 7.4. Actor for PRINT

Figure 7.5. Weakening the postconditions for PRINT .
Figure 7.6. Strengthening the preconditionsfor PRINT .
Figure 7.7. Selected preconditionsfor LIST .

Figure 7.8. Selected postconditions for LIST

Figure 7.9. Selected postconditions for PRINT .

XVil

82

88
90
91
92
93
94
95
96
97
98

113
114
115
116
117
118
118
119
119

Chapter 1: Introduction

Artificial Intelligence (Al) is a field concerned with creating computer pro-
grams that exhibit intelligent be¥iar. One way in which a program may demon-
strate intelligence is to act as a consultant on some t&pich consultant programs
can communicate with people through the medium of speech or natural language.
To be wseful aly such program should approximate a real consultant as best as pos-
sible. Efective communication between the program and people will depend on

how good that approximation is.

1.1. Learning operating systems

In everyday life computer users Y& o use n&v systems, or utilities onxest-
ing systems to accomplish various taskéany people find it hard to learn toto
use operating systems. People at variouddeof computer education mayJeaa
good idea of he to accomplish a task, but not the necessary specifieviauye
needed to complete the task. It is often necessary for the user to obtain further infor

mation about the system or utility.

Information can be provided by manuals, on-line help, or compuferts.
Experts on computer systems are in short supply and canvaysabe &ailable to
help others with &rious problems. Often experts are nadilable at the time the
are needed (see Mcekitt, 1987, p. 2). Documentation can be madailable kut
such documentation is usually very large and cumbersome. Findingnteilgfor-
mation in a short period of time is quitefaifilt. Manualsare not avays useful as
they can supply numerous pages on anything related to a single comiMandals

will not always supply in a sngle page, the answers onwhdo execute multiple

processes, which wolve the union of compbe constraints. Ofterpeople do not

know the command theare looking for and therefore cannot ingdeelevant infor-

mation in the manual. If someone doeédmon how to use the system he may &k

up \aluable time of other users by asking questions abouttbhado smething.

There is a definite need for computer programs which can communicate with a user

and answer questions about the use of operating systems.

Computers can provide help by on-line documentation wheneantlmforma-
tion can be located by simpleeykmatching routines. This is an upgrade of help
provided by documentation manuals. Wier, there is another approach. What if a
computer program could provide answers to queries and aca kal consultant?
The computer program would be lespensve than an gpert, and would be read-

ily available. We all such a program aartificial communicator

1.2. The essence of artificial consultants

We havenow decided that computer programs are a useful tool in communicat-
ing information to the userThe net question we must ask ourselves fgyHat
kind of program makes a good consultant?”e \Wuld build a program which
accepted single words 8ldeleteand gaveanswers like, “To delete files or directo-
ries you do the follwing.”. That would be a simpleeword interiace. Onthe
other hand, the program could present a menu on the screen with the user choosing
various options and inckéng information about the required command. Such con-

sultants are called menu-based interfaces.

However, there are some problems with menu-based sxted. Peoplean
take a bng time to work through the menu interface to firdatly what thg are
looking for. Even more problematic is the starladt of nature that peoplewadys

know what thg want to do in some system, but can only express that in English or

some other natural language.

We oould build a program which accepts English queries and replies to these in
English. Itmay tale a while to kuild a program which accepts variations of natural
language input but thatould be a good solutionMe all such consultant programs
natural language understanders. This thesis is about the theoretical design of a natu-
ral language understander for an artificial communicdioe communicator is an

operating system consultant.

Say we decide that the program willveaan interface which accepts input in
the form of English queries, “What else does the consultant neede’ program
needs to kne something about the subject on which it is meant to consult. The sub-
ject is operating systems. Therefore, all that needs to be done is to type émythe v
manuals that people Yatraditionally searched throughvet, it isn’'t as esy as that,
because there must be some theory @f tiee manual should be represented in the
system. In other wrds, “What is the best way to represent knowledge about operat-
ing systems in a consultaritahust be answered. Also we must find out the best
way to slect particular knowledge refant to a particular question, andea more

important is the problem of understanding natural language input.

If we build a program with an English intade which understands queries, by
selecting the necessary knowledge to do that, then the problem of answering each
query must bedced. © cut costs the knowledge that was used for understanding a
guery could be used to answer ietYthat isrt the way to do it, because the prob-
lem of understanding a query is not the the same as that of answering. The answer
ing process needs to kmanore detail than the understanding process. The answer
ing process needs to kmdhe constraints on some process toXeew@ed by a user
and more important, which commands and options will perform that process. This

has been pointed out by Hegner (1987, p. 1).

Any program with a natural language interface, a knowledge representation for
understanding queries, and a knowledge representation for answering them should
act as a good consultan& module which answers queries in English would be

added. Themve are done.

If we can liild a program which accepts English queries, understands the
gueries, and answers them in English, then the program can act as a good consul-
tant. Of course, mandetails of each component wouldvieato be worked out, and
good theories of design for each modulewid be beneficialWe an’t go wrong if
the program embodies a good theory of communicafi@npolish the communica-
tor off, other modules wuld be added to track the context of waeation with the
user and to represent user beliefs about operating systéimplanning module
would be added to understand plans appearing implicitly in queries, and to check if

such plans were viable.

We have seen some of the problems that need to besiigated in order to
build an operating system consultant which will act as &ct&fe communicator.
The consultant approach brings forward gnahthe major problems in Al research.
Al research topics that come to mind are natural language understandindy, kno
edge representation, inferencing, planning, belief representation, natural language
generation, user modeling, misconception detection ang mare. Although we
will touch on mawg of these topics in this thesis we do not inteng deep discus-
sion on Al approaches to each. That woulcetak a bt of time. However we will
take an goproach on various problems, justify the approach, and compare that

approach to other ones in the field.

1.3. Objectwves of the thesis

The major theme of this thesis is to build a theoretical design of a natural lan-
guage understander for an operating system consuléagbod feel for the prob-
lems irvolved in doing this is supplied by observing the types of queries people ask.
A theory on query understanding will need teeamary types of query Shown in

Figure 1.1 is a list of some common user queries

“How do | print a file on the Imagen?”

“How do | print a file with pageheaders and line numbers?”
“What is a directory?”

“What is a file?”

“What is read protection?”

“How do | print a device file which has pageheaders?”

“What is the permanent storage limit?”

“What is the option on the cat command which numbers lines?”

“How do | print a listing of my directory on the laser printer?”

Figure 11. English queries on operating systems.

which the theory described in this thesis willeo We intend to justify the theory

by showing hw it is used to understand various queries.

Most existing consultant systems for operating systems do not include natural
language understanders. The/fihat do embody natural language understanders do

not encapsulate strong formal models of operating systé&ims.originality of this

work lies in the fact that we kia devdoped a formal model and applied that model

in a natural language understandéve have separated out the kwtedge needed

for understanding natural language queries from thevlatdge needed to answer
them. Aknowledge representation, planning mechanism, and theory of meaning
representations has beerveleped. Vi havenot implemented much of the theory
although there is an implementation of a plan understanding component_iatied

Con

1.4. Organization of the thesis

The oganization of the thesis is as follows:

» Chapter 2 contains a discussion on the probler@viad in building operating
system consultants andvia@thers hae tackled them.We characterize diér-

ent approaches showing the advantages and disadvantages of each.

* Chapter 3 proposes a theory ofwhknowledge about operating systems may
be represented in a computer prograrhe knowledge representation is called

Transfer Semantics

* Chapter 4 introduces a formal language for describing commands or actions
and various manipulations of kmtedge structures. The language is used to
describe different inference rules which extend Transfer Semantics so that
more complg queries may be handled. Six inference rules are introduced.
This chapter shows hoa rule called the Rule of Composition can act as a plan

generator.

Chapter 5 describes Wwothe Rule of Composition may be extended tovallo
specific types of composition. Somewneules are created to compute selec-
tive, parallel, and forked compositionThere is a need to represent parallel
actions, as manoperating systems such as UNIX allparallel executions of
commands. Morecr, people can ask natural language queries about such par

allel executions.

Chapter 6 shws hav natural language input may be understood by parsing
gueries into meaning representations. A theory of embedded action representa-
tions is introduced andxamples of meaning representations farious

gueries are described.

Chapter 7 contains a discussion on the methodology and architecture of the
artificial communicator called OSCON (Operating System CONsultaht).
program called PlanCon, which computes rules of inferenee kmowledge
structures, is described. PlanCon is dgetbin understanding compl@lans
appearing implicitly in user queries.

Chapter 8 is a summary of work reported in this the®¥®. dscuss the alue

of this work, through a critical analysisAs always, future directions of

research are predicted.

Chapter 2: Designing consultant systems

This thesis will describe a design for an operating system consultant that will
accept English queries and answer the queries in English. There farendif
approaches to building operating system consultants and we will describe each in
turn with their advantages and disadtages. Somef the approaches will beewy
close to our own, while others could not be furtheaya Some systems will hee

been designed for specific operating systems while others may be general.

2.1. Evaluation by criteria

In evaluating ary consultant system we should define some criteria that will be
useful. W define four criteria forwaluating consultant systems: (1) friendliness of
the interface, (2) detailed answer production, (3) system architecture, and (4) refer

ence to other systems.

By friendliness we mean ha usable the system isSimple on-line help sys-
tems like the UNIX man program will work only if the user knows command names
or some kywords for what he wants to dddowever, to dbtain help on various con-
cepts the user must kwmdhe command, or relatecywords, and that ishfriendly
at all. Ary good consultant system should answer queries by concepts, not only

keywords.

Simple help systems will not answer conxplieries. Certaiprocesses, such
as printing screen output on the print&quire the concatenation ofvesal com-
mands with multiple options. A simple help systene IWNIX man package wuld
force the user to retrwre information on seeral commands, sift elements from each,

and work out the correct format for the complete procédgnsultant systems

should fuse information together for detailed processes andshwild supply

detailed answers.

Further learning of ansystem by the user is accelerated if he formulates a
good model of the system in his mind. Such system models are called @ogniti
models by psychologists. Cognii nodels are necessary if a user is to properly
understand he to use the system and for the formulation of further intelligent
gueries. A user who has not used UNIX before may come across the conagept of
and need to kn what it means. Someone maydito know the whole structure of
the UNIX file system. Mayn help systems do not provide information about such

system ar chitecture.

Any consultant system must includeference to other systems. New wsers
may hae a rfect background in the use of certain computer operating systems and
may ask queries in terms of these. If related terminology isuilbtitto the consul-
tant, it will fail. In fact, a user may understand operating system concepts very well

but not know that he is using the wrong terminology.

2.2. Types of operating system consultant

Many researchers are working on building operating system consulfEmse
are four basic types of systemagable: (1) simple kyword based systems (SIM-
PLE), (2) systems with menu-based interfaces (MENU), (3) systems with limited
natural language capability (LNL), and (4) systems with natural languageacgerf
(NL). Although we will discuss the characteristics and examples of each type of
system, we are not going to describe all of toslaystems. Therare mag of

them.

10

2.3. Simple keywor d systems

Examples of SIMPLE systems include the UNPan and apropos facilities.
The problem with these facilities is that yhare very unfriendly; the user must
know the name of adyword before he can find out some information about one.
Also, these systems do not provide detailed information when a user tries to find out
about linking a number of commands togetAére user does all theork himself.
SIMPLE systems do not usually include information about other syst@imexe-

fore, SIMPLE systems do not perform well under the four criteriaa@iation.

2.4. Menu-based systems

MENU systems are based on menu-selection where the user is presented with a
menu displaying a number of option3he problem with most menu-selection
approaches to operating system consultation (pointed outlbypdhy et d. 1984, p.

576; Hgner 1987, p. 1; and McDonald & Semeveldt 1987, p. 14) is that tlyeare

not very useful if a user knows what he wants to do, but does nettkeoxplicit
command for doing it. Such menu systems usualy da the names of commands.
Therefore thg behare badly in terms of friendlinessTo find help about some con-
cept a person must kwahe name of the appropriate command or a related term to
do so. Havever, it is wsually the name of the command that the user requires in the

first place.

McDonald et al. (1983) & aganized studies to clarify the effects of menu
organization on user performanc&hey used explicit targets (e.g.Jeémon”) and
single-line definitions (e.g., “a small, oblong, pale-yeilatrus fruit”) to examine
the effects thatype of target has on menu-selection performanceyTgwnt out
that real-world users seldom search for explicit targets in menus. If people kno

exactly what thg are looking for then thg probably knaev where to find it. Say a

11

user is looking for some command to rema fle. It is unlikely that the name of
the command is kwan. Searchinghe menu system is easy if the user knows that

the command is delete. But, then the user need not use the menu system at all.

It is possible that one coulduitd a menu system where abstractions or con-
cepts such as printing are representddwever, such abstractions may still not be
useful to some user who can describe what he wants to do, but cannoyfineran
tion of that in the set of abstractions. The problem arises because natural language
expressions are at such an abstraetl [ehat they may not fall into ag set of con-
cepts. Yu may argue that such abstractions can also be built into a MENUY inter
face. That is true, but then what yowhas a ratural language front end\atural
language front ends are closely related to MENU systems which contayn man
abstractions. Suchont ends allw users to specify queries in terms of abstractions
of word meanings, and are therefore morgilflie. It is important to point out that
we are not saying there is anything wrong with menu-selection approachgsrd he
a wseful insight into hev to gructure knavledge about some domain and are a useful

first draft at building apinterface.

MENU systems bela badly with comple& queries inolving a lage number
of constraints. For example, say a user wants to delete a listing of a file on the
printer queue. The menu system will not present such canflermation, and the
user must piece together knowledge about theyroammands inolved in this pro-

cess.

Any user needs to ka a @od education on the structure of a system. There
needs to be some mechanism for reporting ximileg structures in the system and
how they are related togetheBuch static aspects of the system are not associated
with ary particular command but to each andrg one of them. MENU systems

perform \ery well under this task as it is easy towhdetailed pictures on the

12

screen. Also by using the menu structure yriames the user obtains a good cogni-

tive model on the structure of the system.

MENU systems can also beteavey well under the consideration of reference
to other systemsMENUSs easily provide options that aNothe user to see each
command as it would appear on other systems. The next four sectuohge in

descriptions of MENU systems.

2.4.1. McDonald & Schvaneveldt

The Cognitve Systems Group at the Computing Research Laboratory are
developing formal methods for inteate design (see McDonald et al., 1986;
McDonald & Schaneveldt, 1987). McDonald and Schueseldt have defined theo-
retical motvations for their empirically based approach along with a related discus-
sion of scaling and kndedge acquisition techniques. One application to illustrate
key aspects of their methodology is an ongoingestigation of UNIX users aimed
at improving on-line documentation systeni$ey are developing a theory of struc-
tural descriptions for UNIX. These will be useful in building a menu-based consul-
tation program which will aliv users to efficiently deslop accurate conceptual

models of operating systems.

Their UNIX interactve documentation guide (Superman II) (1) is based on
empirically derved representations of experienced users’ conceptual models, (2) has
several perspecties (e.g., functional and procedural), (3) has multipleele of
abstraction within each perspeeti and (4) provides users who are familiar with
other operating systems (e.g., DQ& ‘bridge’ for transferring their knowledge to
UNIX. Their knowledge representation is based on proximities of semantic infor

mation and is @anized in a network structure. The networks are described in

0DOS is a trademark of International Business Machines Corporation.

13

Dearholt et. al (1985)We ae working closely with the Cognitt S/stems Group to
provide empirical backing for gnassumptions made in dgoping the natural lan-

guage understander.

2.4.2. Hayes & Szekely

Another menu-selection approach is described in Hayes (1982) and Hayes &
Szelely (1983). They havedesigned a system called COUSIN which t®@mand-
level interface for operating systems. By commanEleve mean the system will
execute commands from the intade. TheCOUSIN system provides twtypes of
user friendly information: (1) static descriptions of possiblyoked subsystems,
including their parameters and syntax, and (2) dynamically produced descriptions of
the state of current interaction. One of the applications of the COUSINaiceed
to provide a commandatel interface to the UNIX operating system, i.e., tovpde
an alternatie the standard UNIX shell. COUSIN consists of a reetwof text
frames connected by named semantic links. Each franeiable in size and con-
tains less than a screenfull of information. COUSIN shows to the user information
that is hidden from him by a natural language understantfaile using a natural
language understander the user does not see, or needvdhenstructure of stored
knowledge. Havever, such information can be found by asking the right questions.
The knowledge xasts and is presented to the user only on demand. The natural lan-
guage understander informs the userterms of English, the specific pieces of

stored knowledge that are particularly valg to some query.

24.3. Tyler & Treu

Tyler and Treu (1986) describe an adaptinterface design, and a prototype

usercomputer interface, to demonstrate both the feasibility and utility of a general

14

adaptve achitecture. Thesystem is a commandwe interface where the inteate

takes a uses entry and sends a valid command to the operating sysfeproto-

type has been designed which will interface the user to a UNIX operating system.
Features of the interface are gearedatds the particular useand the specific task
currently being xecuted. Theprototype does not provide all possible UNIX com-
mands, but it does makhe most commonly used commands accessible through the
interface. There are a number of textual pieces of information which can be used in
giving help on some command. Wever there is no great theory of Wwoto effi-

ciently represent knowledge about UNIX here.

2.4.4. Billmers& Garifo

Billmers and Garifo (1985) are building knowledge-based operating system
consultants. Thehaveimplemented an expert system called TEACHVMS which is
used for helping OPS-20] users learn about theAX/VMS [J operating system.
They are also deeloping a system called TVX which provides a general operating
system shell useful for designing specific operating system consultants. Both of
these systems are menu-based expert systems. In agreement with our approach,
Billmers and Garifo are interested in planning solutions to compser tasks,
requiring mag steps. The fact that TEACHVMS ceerts TOPS-20 commands to
VMS commands means that it must contain similarities between concepts from dif-
ferent operating systems. This concurs with our criterion of reference to other sys-
tems. TVXcontains knowledge in twforms: abstract operating system concepts,

and knowledge specific to the target system (i.e., VMS).

OTOPS-20 and VAX/VMS are trademarks of the Digital Equipment Corporation.

15

2.5. Limited natural language systems

LNL systems beheae like expert systems where the user asks queries using
limited natural languageHowever, the natural language capability of LNL systems
is not extensve enough to allev adequate concept formation for complgueries.
LNL systems are more friendly than SIMPLE or MENU systems asdleav more
flexibility in the input. LNL systems alle detailed constraint input and can be good
at describing the static structure of the system.’€ay also include reference to

other systems in their knowledge representation.

25.1. Yun & Loeb

The program CMS-HELP deloped by Yan and Loeb (1984) is an example of
an expert system. CMS-HELP serves as an on-line consultant for users of the
VM/CMSL[Ioperating systemThe system assists novice or experienced users who
need to use unfamiliar systemarciflities. Adviceis given in terms of the sequence of
commands needed to accomplish some user task. The CMS-HpER system
was mnstructed using EMYCIN, a program forvéping knowledge-based con-

sultation systems.

2.6. Natural language consultant systems

The adwantages of natural language understandessrmost LNL and MENU
approaches are numerouse Will not discuss those advantages here, as this has
been done elsewhere (see Douglass & Hegner 1982, pilehisW et d. 1984, p.
576). Thesaypes of system perform very well under each criterionveluation.

The input is in terms of natural language and therefore there is a very daigg v

input. NL's are very friendly and thesupply detailed answers if the knkedge

OVM/CMS is a trademark of International Business Machines Corporation.

16

representation is detailed too. Reference to other systems can be encoded into a
knowledge representation. The disadvantage of NL systems is that are fienjtdif

to build.

2.6.1. Hegner & Douglass

Hegner and Douglass ddoped a natural language UNIX help system called
UCC (see Douglass & Heer 1982 and Hgner & Douglass, 1984). UCC was a
prototype system, implemented in Franz Lisp on a VAX-11/780. It used a simple
natural language front end based on augmented transitiomrketvil he output of
the parser filled slots in so-calledse frames, which represented the structure of
common queries. The d#dopment of a knowledge base and query solver were not
adwanced enough so that theould be linked with the front end. Therefore, UCC
generated answers to queries directly from concept case frames rather tharyfrom an
particular formal language. The systerasantested at Los Alamos National Labora-
tories and it could answer a surprising number of queries adequdsalythe infor

mation obtained with test runs was useful in identifying its shortcomings.

There were tw major problems with UCC: (1) As the front end included a rel-
atively simple knavledge base, it was unable to answer sophisticated queries with
mary constraints imolving command options. It could tell the user that ¢heod
command is appropriate for changing file protection, yetag wnable to ge pe-
cific directions for changing the protection to a particular mode. This could be recti-
fied by linking in the more detailed knowledge basewéler, another problem as
more serious. (2) The simple augmented transition network method of paesng w
not suficient enough to handle the types of queries posed by os&ms. Itbecame
very apparent while improving the system that the best approach would be to

develop a n&v, more sophisticated design for the natural language front end.

17

A program called Yucca as an attempt to augment the UCC system m tw
ways. Yucca incorporated a much more sophisticated formal knowledge base and
an impraved natural language front end. The kvledge base was implemented at
Los Alamos and the Uwrsity of Vermont. Haovever, due to funding restrictions

this work halted and the system was only partially implemented.

2.6.2. Wilensky et al.

At Berkeley, Robert Wlensky heads a group who e kuilt an understanding
system called Unix Consultant (UC) which processes natural language queries about
UNIX (see Wlensky, 1982; Wlensky et d. 1984, 1986; Wensky, 1987). Our
approach to consultation is similar and yefedént to the one at Bezley. We ae
both building natural language systems, yet the way we do that is quite distinct. In
UC there is no separation and formalization of detailed knowledge on operating sys-
tems in a kneledge base. All aspects of UC neaise of one general kmbedge
representation called KODIAK (see idMhsky, 1986). This compares to our
approach of hang abstract knowledge in the natural language understander and
detailed knowledge in a knowledge bageother distinction is that presently the
UC program is intended to be an operating system consultant for UNIX, whereas
our system is intended to maintain references to other systems. In building the natu-
ral language understander we are particularly concerned with understanding com-
plex queries where there are a number of operating system commands interrelated

with each otherto denote higher Mel processes.

2.6.3. Kemke

Kemke (1986, 1987) describes an intelligent help system called the SINIX

OSINIX is a UNIX dervative devdoped by SIEMENS AG.

18

Consultant (SC) for the SINIX operating system. The system is intended to answer
natural language questions about SINIX concepts and commands. SC has a rich
knowledge base which reflects the technical aspects of the domain as well as the
users viav of the system. Although SC incorporates a knowledge base which con-
tains similar knwledge as our natural language understaridere is no separation

out of the detailed knowledge needed to answer oessbr queries. Therefore, we

see SC as being similar in approach and design to the UC system.

Chapter 3: A knowledge representation

Any good consultant system must include aWlsalge representation of the
domain upon which it is meant to consult.good theory of ha to represent that
knowledge is necessary if the consultant is to lfieieft and useful. This chapter is
about defining what we think is a good knowledge representation for operating sys-

tems.

We reed to investigate the means by whiclanous operating system concepts
can be formalized using an appropriate Wieolge representation mechanism. This
representation can then be useiéaively to understand natural languagepees-
sions ivolving different conceptsWe asume the philosoghof Wilks (1978b, p.
210), “The emphasis here is thevaise of the coventional one in this field: we
stress the form of representation of language and seek to accommodate the represen-

tation of knowledge to that, rather than theerse.”

3.1. The elements of a representation

It is our belief that people think (laver abstractly) of operating system com-
mands in terms of inputs and outpuBeople see commands as sets of states of
objects before and after a command xecated. Each command is a black box

which takes a set of objects as input and produces another set of objects as output.

People ask questions about operating systems in the same way yhairtke
about commands. It turns out that most English queries about operating systems
involve wsers expressing the goal of obtaining some comm&unmonly users
will try to describe the #&ct of a required command on some object(s). kame

ple, in the query“How do | print out a file with pagenumbers?”, the user is

19

20

expressing the need for a command to print the offijeavith the objecppagenum-

bers

It is the constraints specified in a user query that enable us to recognize a com-
mand. Thereforaf seems useful to build knowledge structures for describing com-
mands so that these structures are closely related to possible natural language
expressions of such commands. Natural language queviglsiilg descriptions of
commands can be parsed into some high-imeaning representatiorfo interpret
gueries dkctively we need access to domain-specificiaalge. Suctknowledge
could be formulated as abstract representations of actions or objects which are

matched to natural language representations in order to decipher them.

3.2. A representation for objects

There needs to be some data structure for representing operating system
objects. Framebkave keen used before in Al (see Mirysk975) for knowledge rep-
resentation. W can use frames to contain information about various objects in the
system. Ifobjects are not lirkd together in someay, then thg will have little
meaning in the system. Another useful tool is the ability to specify relations between
different objects. Relations within knowledge representationg fwen imple-
mented before using hierarchies of objedixamples of hierarchical representa-
tions are found in Bobmw & Winograd (1977), Brachman (1979), Fass (1986a,
1986b) and Goldstein & Roberts (1977).

Various operating system objects suchfigss protection command-name
last-read-time creation-time and passwordcan be represented by object frames.
Object frames should exist statically in the system befoyepescessing bgns.
Each object frame should containottypes of information: (1) the information spe-

cific to some object, and (2) the relation between an object and others in the system.

21

We all the formemodeswhile the latter are calleakcs

Each node is a set of attributes characterizing an object frame. Nodes in object
frames could be specified using an identifiee lilas It is possible thahasrela-

tions will contain other object frames.

3.3. A hierarchy of objects

In ary hierarcly of objects which are linked together there may beymeaays
of defining relations between them. First of all there should be a link to specify one
object as being a type of anothéhis is useful because we notice that files are types
of container and directory files are types of filee @n call such a relation, tgpe-

of relation.

Also, certain objects are not types of others but parts of themexample,
protection is part of a file and so is user @reatorandlast-tape-read-timare also

parts of files. These can be callgatt-of relations.

Certain commands are instances of others. So, the comitpandat, cp, and

pr are all related to theommand-namebject frame by amstance-ofrc relation.

In Figure 3.1 bela there is an example of what the object frame for protec-

tion-type should look like.

Protection-type is a part of protection and includes user designators, access
privileges and file access. The object frame for user-designator is shown in Figure

3.2.

It is noted that each user-designator is a type-of designaiserg, usetu,

user-o are all instances of user-designators (see Figure 3.3).

In the node set for protection-type (Figure 3.1) the sebasckelation specifies

an object frame called accessvjlege. Read write andexecuteare all instances of

22

(o-frame protection-type
(arcs (part-of protection))
(node (has user-designator)
(has acces-privilege)
(has file-access)))

Figure 31. Object frame for protection type.

(o-frame user-designator
(arcs (type-of designator))

(node ()))

Figure 32. Object frame for user designator.

access-privilge. Finally file-accesscontained in the thirdhasrelation for protec-
tion-type, has instancemccessand no-accesslt is dready apparent that objects
need to be related in a compleierarcly. In Fgure 3.4 we sho a description of

some of the hierargh

From Figure 3.4 we ha the relations in Figure 3.5. Figure 3.5 glsalirec-
tory-passworda concept from the @PS-20 operating system) which is defined in
terms of UNIX concepts. This will be particularly useful for helping some user who

is confused as to which operating system he/she is using. In fact it is one of the

23

(o-frame user-g
(arcs (instance-of user-designator))

(node ()))

(o-frame user-u
(arcs (instance-of user-designator))

(node ()))

(o-frame user-o
(arcs (instance-of user-designator))

(node ()))

Figure 33. Instances of user-designator.

criteria specified in Section 2.1 thatyagood consultant system should contain such
referents between d@rent operating systems. In the hiergréh Figure 3.6 we

shav the definition of a file in terms of its components.

3.4. The representation of commands

We know that commands are actions which define transfer relations between
objects. Knwledge structures for commands are necessary in the systgood
way to represent actions is to determine the existence or states of objects before an
action occurs and also the states after the actionxXeasted. Lets all the states
before, preconditionsand the states aftepostconditions There should also be
some mention of the person who can perform a particular achaepresentation
for commands should include preconditions, postconditions, and an dadter

guestion that arises next is, “What amount of information should be represented?’

24

container

/N

type-ot
tile

type-of type-of pait-of

N e

non-directory-file directory-file

type-of type-of /\‘

part-of

plain-file device-tile /

directory-password
has: application TOPS-20
password-type
has: user-designator
acceoss-privilege
tile-access

Figure 34. Hierarcly of file objects.

We wuld represent the preconditions and postconditionsviay €ommand that a

user could ask about. Hever, that would tak a \ery long time to do, and itould

take a bng time to search the database of actions to find the right one, because you
see, gery command would be represented as an action. There seems to bg no w

out.

25

plain-file
is a type ofnon-directory file
is a type offile
is a type ofcontainer

directory-password
hasapplication TOPS-20
haspassword-type
hasuser-designator
hasaccessprivileges
hasfile-access

Figure 35. Relations from object hierargtior file.

Yet, “What do we notice about certain commanti§hey can be grouped
together under certain cgtwies. br example, the commanés, pr, and moreall
involve printing information from a file although thelo that in different ways. Also
rmdir andrm involve remaoving objects. Already, we @n see a solution to a massi
searching problemWe @n represent abstractions of commands as actibimste
will be an action representation fprinting and one fomailing and one fordelet-
ing, listing, movingand so on.Have we lost anything by abstraction? Yes. Even if
we hare an action representation which has preconditions, postconditions and actors
we hae lost the names of the various commands that perform particular cases of an
action. Yet, all we need to do is place the commands in the representation itself and
we call the whole structure an action framee Wl preconditions, postconditions,

actions, and actors, frame components.

26

tile

m

part-of part-of part-of part-of part-of
tile-id node-definitions owner protection fype

Figure 36. Hierarcly of objects to define parts of a file.

3.5. The necessity of preference

The net problem to be solved is what sort of information should be placed in
each frame component. Well, the preconditions and postconditions should contain
information about objects andwdhe various commands can effect theWe an-
not define all the objects affected by some actibhat would tak up bo much
space. Ascheme must be defined where goigferredobjects are representeBy
preferred objects we mean objects that are usually affected by some &ddion.
only must objects be represented in each condition set but the relations between
objects should be there too. Such relations will also be preferred as there may be

infinitely mary relations for a gien action.

27

This idea of preference is notwen Al. It has been used before byilkg
(1975a, 1975b, 1978b) in Preference Semantics and Fass (1986a, 1986b) in Colla-
tive SEmantics to formulate correct interpretations of natural language sentences. A
good discussion on the relai merits of \arious types of preference are found in
Fass & Wilks (1983). In Wensky (1987) there is a description obncernswhich
are preconditions particularly relnt to a gven plan. Theterm concernis synoty-

mous with our concept of preferred conditions.

3.6. A dilemma in “weak” versus “strong”

Another question arises as to whateleof detail each object should be repre-
sented. W aould represent objects at their most detailed! ler they could be rep-
resented at their most general or abstraa.lePlain files, non-directory files, and
device files are all types of file. Therefore, a file could be represented ditejost

plain-file or non-directory-fileor device-file

We nust consider the disadvantages andaathges of choosing specific or
general representationso @o hat we consider what the representations are being

used for The representations are being used to understand user queries.

3.6.1. Preconditions

People tend to talk about printing files rather than printing plain filesvicede
files. Aspeople tend to specify weak preconditions, and as we want to match these
knowledge structures to what people ,siign we should use weak preconditions in
the action frames too. Therefore, we try to métle preconditions of an action as
weak as possible. Notice that we use tlwediend here, i.e., people can mention
strong preconditions in their queries although that is not what ukeally do.

Already we hae ecified a preference to having weak preconditions for action

28

frames. Therefore we represent files at a genesldsfile in the precondition set.

It is important that we alil@ some mechanism whereby stronger preconditions
can be devied if they are needed. It muldn't do for the action frame precondition
sets to knar only about files and not plain files or directory files oy ather types
of files. “What do we do?T he object hierargh described earliehas information
about files and their types. Therefore it is possible for the system ve derie spe-
cific objects if thg are needed. The power of action frames lies h&nen though
action frames are abstract, more specific frames can be generated easily by inferenc-
ing on the object hierarghand inserting n& objects in the action framedie will

shav how that can be done in the next chapter.

A question of diciency arises as preconditions were defined to be as weak as
possible. Sayve were to represent strong preconditions. Thernyroathem would
have © be epresented. Themngould be a lot of precondition objects and the only
way to minimize these would be to represent at best a minimall$eirefore it vas
a good mave 0 represent more general objects, juse Nke epresented more gen-
eral actions, and we can dexithe more specific objects from the object hiergich

they are needed.

3.6.2. Postconditions

Postconditions for gnaction are changes in object states resulting from the
execution of that action. In all action frames the postconditions represent changes in
state of the precondition set. People tend to specify strong postconditions when ask-
ing queries. For example, someone may ‘ddpw do | print a file with pageheaders
and line numbers?’ Peoplespecify such strong postconditionspageheadersand
line numbes because thewant to define precisely what an action or command

should do. Therefore we Y& a gcond preference for strong postconditions as

29

people use them in queries. In the postcondition set we include objects such as

directory-filesrather tharfiles.

We ty to represent the “strongest” postcondition set foy action. By
strongest we mean the maximum number of (or most constraining) postconditions
necessary to characterize some actioficseiitly. We know non-directory-filesto
be types of file (Figure 3.5) and that either could denote postconditions for printing
files. Havever, the use of non-directory-files (strong) as a postcondition for printing
rather than files (weak) is a more precise definition about the effects of printing.
That is wly we reflect non-directory-file in the postcondition set rather than file.

There is no harm in weakening the postcondition set when that needs to be done.

One could argue that we are not beiniicefnt in representing postconditions
as thg invdve drong rather than weak information. There will be gnahthem.
However we daim that strong postconditionsyem though represented lesdief
ciently, will make the system more globally fefient. That happens because there
will be much time sed in not having to infer strong postconditions from weak
ones (if we had used them) nyaimes. And, “‘Why would we ha&e o do that mary
times?” Because, people usually mention strong postconditions when attke

gueries about operating systems.

3.7. The representation of conditions

Conditions on actions can be represented as constraints on objects. Objects and
relations between them will be preferrédidw do we know what preferred objects
and relations are?”. That is an empirical question and will not be discussed further
here. Havever, we will assume that certain objects and relations will be usual for
some action. For grframe there will be certain preconditions that should rist.e

For example the precondition set for printing should specify the non-existence of

30

directory files because people do not usually print directory files. These types of

conditions are callethandatory

Mandatory conditions are useful for ary important reason. Say mandatory
conditions did not exist and files (weak) were represented in the precondition set.
As directory files are types of file (Figure 3.4) the system caninfer (wrongly)
for the PRINTIframe that directory files are printabl&et, this will not happen
because by using mandatory conditions whiglrrede all other frame conditions
the problem disappears. The mandatory condition for print declares directory files

to be non-printable.

It seems likely that the postcondition sets will natagis contain mandatory
postconditions because these wilivadeen recognized by the precondition set.
Therefore, mandatory postconditions will only be concerned with problems where
specified output can not be obtained from correctly specified inputvddld only

enter those mandatory postconditions which people usually get wrong.

There should be a set of conditions which @pgonal for some action. These
would involve file contents being visible-byte-sequences and xfstemce of print-
ers. Also, we defindefaultconditions for each action frame which contain the most
general information about an actioRor example, for the print frame the most gen-
eral information about printing euld be that one prints files on the screen and that

would be the default.

3.8. Linking preconditions to postconditions

It would be useful if we could define a correspondence between preconditions
and postconditions. Such knowledgeuld aid in predicting the most likely post-

condition (or precondition) for somexmicitly mentioned precondition (or

OWe wse upper case letters to denotg agtion frame, or information contained in one.

31

postcondition) in a user queryhese predictions would help in understanding user
gueries, because it would be a useful check if predicted information matched that
coming in. It is the ability to predict preconditions and postconditions for user
queries that will gie alded paver to the system. Otherwise, it will be difficult to

formulate a good meaning structure to be solved by the knowledge base.

A correspondence isxpressed implicitly between the optional conditions in
the precondition and postcondition se&ay,{ Py, P, ... P, } denote the optional
preconditions for some action A. Then, these are related to the optional postcondi-
tions{ Qq, Qy ... Q, } so thatPy <=> Q(, P, <=>0Q, ... P, <=> Q , for action A.
So, the first optional precondition in the precondition set corresponds to the first in
the postcondition set, the second to the second, and so on. One-to-one correspon-
dence between preconditions and postconditions is implicit: it ipdbk#ion of a
particular condition in its precondition/postcondition set that determines correspon-

dence and there are no other markers to specify that.

As we represent postconditions at a strongesl than preconditions, marsit-
uations will arise where agn precondition will correspond to, or map ontoptar
more postconditions. If we decide to write out all the optional preconditipis-e
itly then there will be some redundanio the precondition sets as some may be rep-

resented twice.

However, we shall write out preconditions and postconditions as there should
not be too mayof them for a gren frame. If it turns out that mgrconditions need
to be repeatedxbaustvely for action frames, the correspondence can be denoted
explicitly by some flagging system rather than writing the same preconditions twice.
The fact is that the cost of a checking algorithm for flags may be too costly if there

are not too manconditions for most frames.

0 <=>" denotescorresponds to

32

3.9. Actions and actors

It is also necessary to specify the possible actions that cause transfer between
preconditions and postconditions. Associated with each action will be a number of
options. Actions will include commands dikpr, Ipg, and options include -I, -a, -s
and so on. W aall the complete ganization of object frames, object hieraycnd

action framesJransfer Semantics

3.10. The correspondence between queries and knowledge

In this section we will she how vaious queries could be interpreted using
object and action frames. While doing this weej in mind that action frames are

representations for describing operating system commands.

We aopt a distinction between concept description queries and dynamic
gueries. This distinction has been emphasized by Hegner (1987). Concept descrip-
tion queries are simple queries about objects whiabivie no manipulation of those
objects. Vpical concept description queries are, “What is a directory?”, “What is
pr?”. Dynamicqueries are those whichvimlve actions transferring objectslypical
examples are, “Hw do | print a file on the Imagen?”, “What is the option on the cat

command which numbers lines?”, “#alo | print a listing of my directory?”.

3.10.1. Concept description queries and knowledge

In handling concept description queries such as, “What is read protection?”
the hierarcl of object frames becomes very usefidtom the shapshot of the net-
work in Figure 3.7 it is possible to locate nedet object frame relations. The fol-
lowing section of network is used in generating a static domain-specific representa-

tion of the latter query.

33

protection-type
has: access-privilege

N

instance-of

N

read

Figure 37. Snapshot from object hierarglior protection type.

Now, say some user has used th@PFS-20 operating system for most of his
computer lifetime and decides to use UNIX for a chanbeen he/she is likely to
assume that UNIX is similar toOPS-20. One could expect queries such as, “What

is the permanent storage limit?”. The relations in Figure 3.8 are used here.

directory-file
haspemanent-storage-limit
hasapplication TOPS-20
hassimilarity disk-space-hard-|imit

Figure 38. Similarities between different operating systems

34

The abee relations denote the similarity between concepts fromgperating
systems. The similarity between disk-space-hard-limit and permanent-storage-limit
is marked using has relations. This mechanism is especially useful if a user thinks in

terms of one operating system but is using another.

3.10.2. Dynamic queries and knowledge

The object hierarghis availed of again for dynamic querieHowever, as
dynamic queries wolve ations, action frames must be referenced, Bayexample
we want to interpret the querfwhat is the option on the cat command which num-
bers lines?”. Through searching the action frame preconditions, a precondition men-
tioning files and their containing visible-byte-sequences would be matdhed.el-
evant postcondition is specified by the file again appearing on the screenvamgl ha
a line numbers filter appliedThis is done by moving down the object hiergrch
from filter, which occurs in the postcondition, tmmbered-lineswhich are a type
of filter. Also, thecataction in is marked because “catasvmentioned in the query

The user is marked as being the vahe actor.

Similarly, the query “How do | print a file on the Imagen?” matches an
optional precondition where files contain visible-byte-sequences. Alsoxite e
tence of a printer queue is needed. The postcondition will specify output coming
out on a printer rather than the screen. There will be no match for the action compo-

nent of a frame, as no action was mentioned, and the actor isuagain

3.11. Altemative representations of knowledge

The UNIX Consultant (UC) (see W@nsky et d. 1984, 1986) emboies a knb
edge representation calledBIAK. The central theme of RDIAK is that it is a
relation-based systemdilensky (1986, p. 23) says, “... BDIAK relations hae a

35

fixed number of argument positions. Morem each argument position of a relation

is itself a full-fledged object. In general, the meaning of these argument-objects is
derived from the named relation that hold between thekTODIAK has a wide rep-
resentational scope and still maintains the possibility of conforming to a canonical
form. Atthe action frame iel Transfer Semantics is also a relation-based system
where actions are described in terms of precondition-postcondition correspondence.
In Transfer Semantics the meaning oy antion is the precondition and postcondi-

tion set for that action. énsky decides to represent all concepts in terms of rela-
tions. W& anly see the need to represent actions (which manipulate objects) with
relations. Mawg objects are not defined by relations iraisfer Semantics although

there may be relations between them.

The UC system is not presently intended to handle queries using terminology
from operating systems other than UNIX/e ae more concerned with understand-
ing comple queries where there are a number of operating system commanels inter
related with each otheto denote some higherve process. liseems that fansfer
Semantics, which captures the meaning of commands, in a way that people do, is a

suitable formalism for abstracting operating system behavior.

Kemke (1987) has independently come up with a knowledge representation for
operating systems quite similar to owwro TheSINIX Consultant Knowledge Base
consists of a taxonomical hieraychf concepts according to different views or clas-
sifications of domain concepts. These domain concepts are commands and virtual
objects from the SINIX operating system. Highemleoncepts correspond to nat-
ural language terms, mental model entities, or more general abstract actions and
objects. Eacleoncept is described with respect to its function, structure, use, and/or
relation to other concepts. The SINIX knowledge baseganared, like aurs, as a

hierarcly of concepts. Théeaves of the hierarchi correspond to SINIX objects or

36

commands. Kmke dso includes preconditions and postconditions in her defini-

tions.

There are some differences with our approach.d@/rot include actions in a
hierarcly, dthough action frames do makse of the hierargh In Kemkes knowl-
edge representation actions are stored explicitly at differegit lef detail in a hier
archy. For exkample,communicate-with-usas stored at a &l above send-mailand
read-mail in the hierarcip. Howeve, these are not stored as different actions in a
Transfer Semantics hieragchWe represent actions abstracifnd as frame objects
are defined in the hierarglit is possible tocompute new action frames (which are

stronger or weaker) from these object definitions.

The work by Schank (1975) on Conceptual Depengd¢@®) is lagely con-
cerned with representations for actiortdée proposes that comple@epresentations
are composed out of a well-defined set of priraitioncepts. Theentral theme of
CD is that meaning representationsdanonical form so that things meaning the
same are represented in the sanagy wen though thg may be expressed &af-
ently. CD invdves decomposition into primvis where all complicated entities are

represented by simple elements.

The problem with CD is that too much concentration on canonical form has led
to a lack in formalizing anspecific high-leel objects. Wlensky (1986) shows that
CD poses problems in computing certain types of inference. It istlyedecompo-
sition into primitves that causes inference problentsor example the system tries
to male inferences abouiuying in terms of the ATRANS (abstract transfer) primi-
tive. As Wilensky (1986, p. 12) puts it, “...decomposing conceptual objects into
primitives doesnt help one mak& inferences anmore than it gets in the ay. It
facilitates inferences about more abstract ideasfok example, change of posses-

sion, only at the cost of making it morefiifilt to male inferences about more

37

comple ideas such as buying.”

Transfer Semantics is similar to CD in that it embodys representations for
actions. Havever, the difference is that TS is a mechanism for describing the more
comple effects of performing specific actions on particular objects. It is important
to represent the complalifferences between actions as well as their similarity and
this is exactly where CDafls. Certainly CD would present mgnproblems if we
were to use it in gnformalization of operating system actions or commands. In
fact, Wilensky et d. (1984) and Arens (1986) found this out wherythsed CD in

an earlier version of the Unix Consultant (UC).

Our object frames are similar to the frames proposed by Mi(ldk75). ‘et,
Minsky (1975, p. 234) decides, “thatyasvent, action change, flo of material or
information can be represented by a two-frame generaliad.eT his is in con-
trast to our system where single action frames are used to represent state changes of
objects. Wks (1978b) describes semantic structures called pseudo-texts for natural
language understandindVilks (1978b, p. 203) defines a pseudo-text as “...a struc-
ture of factual and functional information about a concept or item, and is intended to
fall broadly within the notion of frame in the sense of Mipskharniak, and
Schank.”. Pseudo-tgts are also similar in function to the object frames we describe
herein. Our action frames V& smilarities with the scripts discussed by Schank &
Abelson (1977). Action frames could be interpreted as scripts representing the

behavior of various operating system commands.

3.12. The limits of knowledge

It is concluded that fAnsfer Semantics is an appropriate mechanism for
describing actions and Wwothese actions transfer objects. It seems a particularly

effectve mechanism for abstracting characteristics of various computer operating

38

system actions in a concise formalisme Wave shovn hov Transfer Semantics
could be used to specify domain-specific \wlemige in order to interpret concept
description and dynamic English queries. The use of Transfer Semantics in-an oper
ating system consultant will enable the production of detailed representations of
user queries. These representations will representhesystem understood a natu-

ral language query.

A patrticularly useful feature ofrainsfer Semantics is that similarities between
object frames are maegkl. Thereforegven though a query may be presented to the
understander with TOPS-20 lingo, that query can be interpreted and answered in
terms of UNIX. It is hoped thatréinsfer Semantics will be used to model other

operating systems as research continues.

In building our knavledge representation for operating systems thewe ha
been a fev things left out. There was no attempt to describev@SCON gets the
right frame for some querySuch processes will be discussed in ChapteNGér,
have we described the meaning representation of an English query before the frames
are matched to it. These representations are also discussed in Chajhbeveder,
even more important is theatct that the knowledge representation itself may not be

complete.

Sets of conditions for action frames are only preferences in the system that are
typical of some actionWe wse preferences for twmajor reasons: (1) in order to
select the correct frame, and (2) if we specified all possible transfer conditions on
frames thg would certainly become very [g&. Yet, the action frames are not

restricted to preferred conditions because of their relation with the object hyerarch

The query “How do | print a plain file?’ cannot be handled byrdnsfer

Semantics as it stand3.hat is because preconditions are represented weakly and

39

plain files do not occur in the PRINT frame precondition set.Kidw the object
hierarcly can be used to dee a nore specific action frame to handle this query
However, we must work out exactly he that is done. Questions arise as tovivee

know when to use the object hieraycto find nev information about objects in the
frames. Moreimportant, what sort of rules definevhave do this. Somequeries

may irvolve more than one action and there must be some rule for adding actions

together The solutions to these questions are tackled in the next chapter.

Chapter 4: Some rules of inference

In the preious chapter we discussed andiaieped a knowledge representa-
tion for operating systems called Transfer Semanfit® job of Transfer Semantics
is to act as a good knowledge representation which can be used in understanding the
gueries people ask about operating systems. There were certain elemeatsof T
fer Semantics that were notptained in depth. For examplé&;1ow does the system
knov when to use the object hieraycho obtain nev knowledge?’ M oreover,
“What does OSCON do when it finds out thatvrenowledge is necessary?’
“What happens if someone uses more than one command in a user’ duesy?’
important to write out explicitly the mechanisms to salvese questions. That is

what this chapter is about.

4.1. A need for inference rules

A knowledge representation scheme issenecomplete while there are no
stratgjies to manipulate that schem&s conditions on action frames are preferred,
we choose those conditions typical for some actibnis is done for three reasons:

(1) so that the correct frame will be selected for a particular g(#®rirames wuld
become very large if all possible transfer conditions were specified, and (3) inherent
requirements for specifyingveak preconditions andstrong postconditions on
frames. Thevery fact that frames contain only preferred conditions means that
Transfer Semantics is weak. That can be shown explicitly by vaneumsptes. The

power of Transfer Semantics must be increased.

Some interesting problems arise wherankfer Semantics is used to under

stand natural language querigs.clue to such problems was alreadyeni above.

40

41

Only preferred conditions on frames are depénl. Otherwisethe frames wuld
become enormous and difficult to handle. Also we showed in Chaptery 3twh
would be beneficial to represent weak preconditions and strong postconditions in
frames. Hwvever, by doing that we hae @nstrained the preconditions and postcon-

ditions and that causes problems. &d&iok at some of the problems.

Say some user decides to enter the quadpw do | print a file on the
screen?’ T his query will be parsed first, into a shallborm, and then into a seman-
tically deeper meaning representation. So far there is no problem. The next step in
the control flov of the understander would be to select a domain-specific action
frame. ThePRINT frame should be selecteHowever, that may not happen as the
postcondition set for the PRINT frame only krsoabout specific NON-DIREC-
TORY files and not FILES. This problem occurs because in each frame the post-
conditions are madstrong. NON-DIRECTORY-FILE from the postcondition set
does not matcfilet (or the meaning representation that it is parsed into) from the
user query Thus the abee query may not be processed correctly by the natural lan-
guage understandeMe reed a rule to weaken the system reference to NON-
DIRECTORY-FILE so that it becomes FILEThis is done by inferring non-direc-

tory-files to be files from the object hieraych

Another problem arises with the quetiow do | print a plain file?. As pre-
ferred conditions are stored in frames, there will only be mention of FILEs in the
precondition set for the PRINT frame. Inyaitame we mad& the preconditions as
weak as possible.The frame selection process may mistakenly reject the PRINT
frame. Aninference rule is needed to strengthen the system reference to FILE so
that it will match plain file. This problem is the complement of that e@oln this

case the user query has stronger informatgair{ file) whereas abee it had

T Lowercase italicized characters are used to denote information from a user query.

42

wealer information file). Thereis a requirement for an inference rule which will

strengthen the system reference to FILE so that it becomes PLAIN-FILE.

Another type of problem occurs when more than one action or command is ref-
erenced in a user queior example, in the queryHow do | find the misspellings
in a file and then ‘more’ theni?the user has specified tveoncepts. Theoncepts
detecting-spelling-mistakemnd moreindg 1 have been related together in this query
An inference rule is needed so that action frames froamsfer Semantics can be

composed or interconnected in some way.

To summarize, there are three clear problems identified in the examples abo
(1) sometimes postconditions for action frames are too strong, (2) sometimes pre-
conditions for action frames are too weak, and (3) sometimes one frame is not
enough to handle a queryransfer Semantics will not work without inference rules.
There is no requirement to define specific rulesyeryeexample of these problems.
Any rules we deelop will have © be gneral enough to cater for numerous natural
language examples of the problems\abd_et’s define some inference rules to ¢ak

care of the abee problems and some others.

4.2. A language for inference rules

It has already been decided that there need to be some rules which the system
will use as a guide to selecting information from the object hieyard¥e rneed a
language to define these ruledf course, ay language we define will only be an
aid to describing the inference processeslied. Thecomputer program auld
probably hae dl the rules implementedxglicitly in functions or routines and

would not need to worry about the language itself.

O'More’ is a command from UNIX which produces formated output on the screen.

43

There are manlanguages possible while defining inference rules. There are
even more ways of implementing the rules onceythavebeen defined Axiomatic
semantic techniques Ve keen applied in exploring the logical foundations of com-
puter programming. Axiomatic semantics seems a most lucid mpldnatory
method for defining our rulesMe an construct abstract formalizations of inference
in the spirit of axiomatic semantics. First, lets discuss the foundations of axiomatic

semantics and get used to some notation.

Axiomatic semantics has been used in the formal specification of the syntax
and semantics of computer programming languages. The paper by Hoare (1969) is a
classic reference on the core ideas of axiomatic semamiasy of Hoares ideas
were stimulated from a paper by Floyd (196&)more mathematical description of
axiomatic semantics, and particularly program verification, is described in Stanat &
McAllister (1977). Other discussions are found in Hoare &thW(1973) and
Algai¢ and Arbib (1978). Owicki and Gries (1976a, 1976b) apply the approach to
parallel programming. A good introduction to the semantics is formulateddsnP

(1981).

An axiomatic semantics for programming languages will bdicseritly
defined if the specifications enable one tovprany tue statement about thefesft
of executing ary program or program segment. There is also the requirement that
the specifications do not allothe proof of ap false statements. Specifications are
analogous to the axioms and rules of inference from a logical calculus. Each specifi-
cation describes a minimal set of constraints thgtigaplementation of the subject
language must satisfyComputer programmers Y& used axiomatic semantics to
construct proofs that programs possessous formal properties. Logicakpres-
sions are used to makssertions about the values of one or more progmhes

or the relationships between these values.

44

The class of assertions include formulae of the form,

{P}A{Q}

where P and Q are logicakmressions, and A is a construct or statement from the
subject language. The notation &bds interpreted to mean thaif P is true before

the execution of A and if the xecution of A terminates, then Q is true after the ter
mination of A . P is @lled thepreconditionof the assertion and Q thp@stcondi-

tion. Any assertion of the form {P} A {Q} will be either true oalse. It is assumed

that a program will terminate after theeeution of aly A. Axiom schemata can be
developed for various constructs in the languadeules of inference (proof or
deduction rules) enable the truth of certain assertions to be deduced from the truth of
others. Arule of inference of the form sha in Figure 4.1 witiH; H,.... H, being
general assertions means thafven H; H, H, are true, then H may be deduced

to be true”. This is called thigrst principle of deduction

HyHy.... H,

Figure 41. Definition of the first principle of deduction.

Also we define a rule of inference of the form whoin Figure 4.2 which
means that/if H,,; can be deduced by assuming the trutiipH,.... H,, then H
may be deduced to be trug.hen H may be deduced to be tiu&his is called the

second principle of deduction

45

HiH.... Hi|- Hpu

Figure 42. Definition of the second principle of deduction.

These rules of inference are independent of particular domain under
description. Itis possible to build an axiomatic semantics for a programming lan-
guage by defining marspecific rules of inference. Some of the rules definedwelo
have parallels with those for describing programming languages. Firs,define

some useful notation.

4.3. A language for representing actions

We cefine a language for representing operating system actions or commands.
The notation in Figure 4.3 is used to denote #ut fhat some user U careeute

the action A to transfer the precondition set ({P}) to the postcondition set ({Q}).

{{P}A{Q}};U

Figure 43. A language for representing actions.

46

We all the information inside the bold bracds}] a command erironment
The command environment describes the results of multiple or single commands.
There may be mgncommand environments existing in the system andyrddfer-
ent users>aecuting these. Also, grexecution of a command environment will cause
a date change in the systenkxplicit objects within the precondition set {P}, or
postcondition set {Q} shall be represented by lower case characters whereas actions,
A, shall be represented by upper case charactergally, if there are no precondi-
tions imposed on some command the we write TRUE A {Q&. &80 assume that
the eecution of action A does not ta sde effects which we do not knoabout.
An example of a command environment for the COPY command vensinoFigure

4.4,

{ {,,.file, /usr/afzal/format,} COPY {,,non-(daictory-file,,/usr/paul/papers,}} :

User

Figure 44. A command environment for the COPY command.

We wse commas to shothat only some of the objects in condition sets are
being made explicit. There may be manore. Thenamed objects in precondition
and postcondition sets refer to similar objects from the user.qUémlse objects
will also have cefinitions in the object hierarghlf they do not then the system will
not understand themfor clarity, we wsually present the same referent as used by
the user to denote objects. Of course, this is not what really happens as all queries
are parsed into meaning structures. Also, the frames do not contain trivial objects

for pre/postconditions, but constraints on objet& d not shav the relationships

47

or constraints between objects in our notatidhey are not needed toxplain the

salient ideas in this Chapter.

4.4. The first rule of consequence

One problem with Transfer Semantics is that conditions specified in the post-

condition set are too strong to match user querliégre needs to be some method

of weakening themLet’s take a bok at the problem query aigp. The user askl,
“How do | print a file on the screen?l he problem was that grframe matcher
couldnt matchfile in the query (or whater meaning representation it was parsed
into) to NON-DIRECTRY-FILE file in the postcondition set for the PRINT action
frame. W can use a rule of inference in unison with the object hieyaichocate
NON-DIRECTORY-FILEs as types of FILE. That is what wemt, and the rule of
inference is called thEirst Rule of Consequencdn general we hee the formula

shown in Figure 4.5.

PIAQ. Q=R
PYAR] |

Figure 4.5. Definition of the first rule of consequence.

This general rule states that if {P} A {Q} is true and the postcondition Q
implies R another postcondition, then the system can infer {P} A {R} to be true too.
The system has deed a rew frame <{P} A {R} U> by producing the postcondi-

tion set {R} from the postcondition set {Q}. More specificalfpr the &le

48

noted abwe we get Figure 4.6.

{P} PRINT {,,non-directory-file,,} , non-directory-file => fil§ User
{P} PRINT {,,file,} '

Figure 46. Application of the first rule of consequence.

The first rule of consequence is applied to the specific natural language form
and we note that if the object frame FILE exists in the postcondition set, and NON-
DIRECTORY-FILE implies FILE, then {P} PRINT {,file,} is also true. Ng the
new frame <{P} A {,,file,} U> will match the natural language query and the frame

selector can choose the correct frame.

4.5. The second rule of consequence

Another problem with Transfer Semantics was that sometimes preconditions
for frames are too weak. There needs to be some method of strengthening precondi-
tions. Saythe user askedHow do | list a plain file?’ The problem was that the
precondition set for the LIST action frame only Wwsoabout FILEs and not PLAIN-
FILEs. The frame selector may reject the listing frame. But, from an object frame
hierarcly the system could ke inferred a PLAIN-FILE to be a type of NON-
DIRECTORY-FILE, and a NON-DIRECDRY-FILE to be a type of FILE. Then
frame selection wuld work better The rule of inference needed here is called the

Second Rule of Consequendde rule takes the general form shown in Figure 4.7.

49

{ S=>P {PIA{Q}] .
SAQ J

Figure 4.7. Definition of the second rule of consequence.

This general rule describes that if another precondition S implies the precondi-
tion P and {P} A {Q} is true, then the system can infer {S} A {Q} to be true too.
The system has deed a rew frame <{S} A {Q} U> by producing the precondition
set {S} from the precondition set {P}For the example problem we dew a pe-

cific formula shown in Figure 4.8.

s User

plain-file => file , {, file,} LIST {Q}
{ {,,plain-file,} LIST {Q}

Figure 48. Application of the second rule of consequence.

If the object frame FILE »asts in the precondition set, and PLAIN-FILE
implies FILE then {,,plain-file,} A {Q} is also true. It will be easier for the frame
matcher to choose the PRINT frameandNote that in this particular example we
have gplied the implication operator twice, i.e., plain-file => non-directory-file, and

non-directory-file => file.Before we go on to discuss a very powerful inference rule

50

there is a need to clarify some of the ideasvabdhere are tw things we wish to
clear up: (1) a question of inference direction, and (2) the meaning of the implica-

tion operator “=>".

4.6. Inference direction and the meaning of implication

In applying the first rule of consequence we used non-directory-file => file, and
in applying the second rule of consequence we used plain-file =>Hdevever,
there is a subtle difference in the way we did that for each mlée former case
we already had NON-DIRECGIRY-FILE as a postcondition in the frame and found
FILE from that. Yet, in the latter case it was FILE thaisvin the frame. In the first
case it5 easy to mee Y an dject hierarchh from NON-DIRECTORY-FILE to
FILE (stronger to weaker). In the second case Hm we get, plain-file => file?,
because non-directory-file => file, and directory-file => file, and device-file => file,
and all those things that are types of file => file. This cowe been done by find-
ing all the objects that implied file until one matched with the user qlieay’s dl
right for this example because we would only need tovelesi fandful of nev
frames. Hwvever, in any exended object hierarght may tale forever to get the cor

rect frame.

So, the vay to do inference is to takihe semantic representation of some
object mentioned by the user (ejglain file) and to denve a elation between that
and what exists in the frame. Of course we areyilneke because it turns out that
what the user said was corre&tlain files can be a good precondition for printing. If
the user specifies an incorrect precondition then no relation xrstyaad we will be
stuck. Yet that is fine, because the user was wrong in the first place anoulde w

tell him so.

51

Another point which needs clearing up is the meaning of the implication opera-
tor in the inference rules described abd/Nhat does it mean for non-directory-file
=> file? Intuitively, this means that a strong objecivays implies a weaker one if
and only if those objects are related and of the same type. In the object gierarch
the relationship between non-directory-file and filetyige-of Therefore, if one
object is a type of anothewmne implies the otheiThis would also be the case with
aninstance-ofelation, but not wittpart-of. Implication is not commutatg; device-
file => file is true, this does not mean that file => device-file is also tloeuever,
implication is transitie for type-of relations but not instance-of relations. If plain-
file => non-directory-file and non-directory-file => file, then plain-file => fike.

basis for implication within command environments has been defined.

The implication operator=>"" is comparable with ISA (is a) and AK (a-
kind-of) links which hae dready been described in the field of knowledge represen-
tation. For example, Fass (1986a) describes such operations by demonstrating
moves dong “ancestor’ paths in a semantic netrk. Othersuch descriptions are
found in Bobrev & Winograd (1977), Brachman (1979) and Goldstein & Roberts
(1977).

4.7. A theory and representation of query embedding

Many queries about operating systemsadine nore than one action to com-
plete some processoFexample, the queryHow do | gop a listing of my direc-
tory, which is printing on the Imagen“hvolves three actionsemoving listing and
printing. We all such querieembedded querieSThe previous query is an an

example ofexplicit embeddingvhere three actions are explicitly mentioned.

It is possible to define a language for describing embedded commands or

actions. V¢ wse the notation4, < A, <...A,] to denote an embedding set where

52

action A; is embedded inside actiof,, and so on. One can think of embedding in
terms of a stack wherd,, is pushed on top of,; and so on. Interpreting the
stack, the postcondition {Q} from performingy; is passed as a precondition Ag

and so on until we reach the top of the stack. tRe previous query we Y& the
embedding set, [LIST < PRINT < REM(&] and for the query‘How do | print a
listing of my directory on the Imagen?” we get, [LIST < PRINTh the latter
example a directory is initially listed and then printed. In effect, the concept of list-
ing is embedded inside printing. Certajnity order to interpret queries\valving

embedding, we need to use some other inference rule to process action frames.

4.8. A rule of composition

As seen in the pvgous section a third power problem with Transfer Semantics
is that sometimes people ¢iko nention more than one action in a quelyis nec-
essary to hae a inference rule which concatenates or composes action frames
togetherlf this is not the case then the frame selection mechanism may try to select
between tw different frames which are both redat to the queryThe rule for link-
ing frames together is called tRelle of CompositianThe general form for the rule

of composition is gien in Hgure 4.9.

This general formula states that if {#}; {Q} is true, and {Q} A, {R} is also
true then we can infer {P}4, < A;] { R} to be true too. In effect, this rule specifies
that the postcondition set found by applying a number of actions in sequence will be
the postcondition set dead by gplying the postconditions of wrection in the
sequence as preconditions to a subsequent action. It is important to note here that
{Q} may only represent a subset of the total postcondition&; afr total precondi-
tions for A,. Also, the rules of consequence may need to be appliedwoughgm-

ilarities between the postcondition féy and the precondition foA,. A more

53

{{P} AIQE QAR
PHA<AIR) J°

Figure 4.9. Definition of the rule of composition.

specific formula for thexample query*“How do | detect misspellings in a file and

more them?’is gven in Hgure 4.10.

s User

{P} SPELL {Q}, {Q} PRINT {R}
{ {P} [SPELL < PRINTKR}

Figure 410. Application of the rule of composition.

From the abee gecific inference rule we deduce that if the postcondition of
the action frame SPELL is applied as the precondition to PRH¢H it is inferred

that the postcondition of PRINT is the postconditionakcating both actions. It is

easy to think of the rule of composition as describing a mechanism which processes

mary objects and manactions. Theule is a Mag Object-Mary Action definition.

The rule of composition is an abstract representation of a mechanism for com-

posing various commands. It is powerful because it allows us to compose command

ervironments. V& will term ervironments with more than one commammllti-

54

commandervironments. Itis possible to build a structure representing the state of
the system at gntime by concatenating commandveonments. W& will use the
term system evironmentto describe a complete user session (all commands and
objects used) with an operating system. Systewrarmments are multi-command
ervironments in thexreme. Therule of composition acts as a generator of multi-
command evironments. Itcan therefore be used by the natural language under
stander to understandyaplans the user may mention implicitly in a quéne $all

call the plan understand@tanCon PlanCon will embody the rule of composition

and the tw rules of consequence.

Concatenated commandveenments can be produced dynamically by Plan-
Con on requestSome user may wish to kwavhat happens to a number of objects
after applying a number of actions. Using PlanCon OSCON could construct the
state of the users wieof some system wolving ary sequence of commands. The
user or OSCON would be able to determine if the sequence in nasmgnductie
or detrimental. PlanCon will enable OSCON to build representations of the state of
some simulated @ironment envisaged by a user who is asking queries in a dialogue
or context mechanism. A good description of such a mechanism is discussed by

Arens (1986).

Now we havetaken care of threeery visible problems that Transfer Semantics
would have without inference. Three more inference rules will be defined for com-

pleteness. Theswe called the AND, OR and No-consequence rules.

4.9. The AND rule

The AND rule specifies a conjunction of constraints which may be necessary
for some action.Heres an eample query where the AND rule would be applied:

“How do | gppend the file mbox to /usr/paul/post? this case the user wants to

55

append one file to anothekLet’'s not worry for nav about hav the system knas
that/usr/paul/posis a file. The system needs to AND each file as a precondition to
the APPEND action frame. The general form of the AND rule isvehia Figure
4.11.

s User

{P}A{Q},{P}A{Q}
{PAP}A{QAQ}

Figure 411 Definition of the AND rule.

This general formula states that if {P} A {Q} is true anB A { Q}is true
then it is possible to infer {P R} and {Q A\ Q} to be true too. We $how a nore

specific formula for the example query aban FHgure 4.12.

s User

{,,,mbox,,.} APPEND {Q}, {,/usr/paul/post,,} APPEND {
{,.,mbox,, \ ,,/Jusr/paul/post,} APPEND {Q \ R}

Figure 412 Application of the AND rule.

From the abee 9ecific inference rule we deduce that if the preconditions
mbox and /usr/paul/postare to be applied to the APPEND action frame, then these

preconditions can be ANDed together and applied at once. In the exampdengbo

56

have included, for claritythe actual names of the copied files. Of course, in reality
the file names are parsed into a meaning representation and the spsidndeter
mine the types of these file§hey may both be PLAIN, or one PLAIN the other
NON-DIRECTORY and so on.Naturally, other processes are used to determine the
type of a file. It is possible to think of the AND rule as processingynoajects

through one action. This is a Ma@bject-Single Action definition.

4.10. The OR rule

The OR rule specifies the disjunction of a number of preconditions for some
action. Thesepreconditions will produce a set of disjoined postconditioAs.
example query where the OR rule is applied would &w do | delete the files
mbox and .mailrc?’In this case the useramts to knw how to delete two files
rather than one. The system can OR representations ofdHaetsvas preconditions
to the DELETE action frame. The general form for the OR ruleviengh FHgure

4.13.

{P}A{Q}.{P}A{Q} \ . U
{PVPIAQVQ} [

Figure 413 Definition of the OR rule.

This general formula states that if {P} A% is true and {Q} A {Q} is true,
then it is possible to infer {P P’} and {Q V Q} to be true too. A more specific for

mula for the example query isvgn in FHgure 4.14. From the abe 9ecific

57

s User

{,,,mbox,} DELETE {Q}, {,.mailrc,,} DELETE {®
{ {,,,mbox, \V ,.mailrc,,} DELETE{Q V'®

Figure 414. Application of the OR rule.

inference rule we deduce that, if the preconditimmxand.mailrc are applicable

to the DELETE action frame, then these preconditions can be ORed together and
applied at once. This will sa wsing the same frame twicdt is also possible to

think of the OR rule as processing mafjects through one action. This is another

Many Object-Single Action definition.

4.11. The distinction of AND and OR

The AND and OR rules are distinct from the three rules described eanesr
AND and OR rules are used to add information together forem fiame. Thg do
not derve rew information to be placed in a fram&here is a difference between
AND and OR rules in that the AND rule is defined becausengcgssarywhereas
the OR rule is defined fafficiencyreasons. Thé&nction of the AND rule is to add
necessary constraints on objects together for a frame. The OR rule is used to OR
object constraints together in one frame which coule limen processed separately
by two runs of the same frame. This could be done with the rule of compodaion.
this we mean that the OR rule could be reedoso hat some parallel rule of com-
position e&ecutes an action or commandeo mary objects concurrentlyThis could

not be done with the AND rule as some frames such as APRteN®source and

58

destination files to exist beforgesution.

In some operating systems it doeésmatter if /usr/paul/post or mbox dan’
exist before gecuting an APPEND command. Wever, in some systems it does
matter and as was said before, we are taking a general approach to operating system

design.

4.12. The No-consequence rule

Trivially, the No-consequence rule is‘do-nothing’ statement and is defined

by Figure 4.15.

{{P} A {P}}

Figure 415. Definition of the no-consequence rule.

The rule shows us that aftexeeuting an action A some preconditions do not
change at all. A command éldatein the UNIX operating system could be consid-
ered under a no-consequence rule because it does not really change the states of files
and directories in the systenAny no-consequence rule can beeuted a number
of times throughout gncommand environment without havingyagffect on file or
directory objects within that commandveonment. Vi nust be careful while
applying the no-consequence rule as certain objects such as the terminal screen will

be changed with application of commands such as “date”.

It is important to realize that the no-consequence rule is truly an element of

Transfer Semantics. The no-consequence rule does transfer objects from one state to

59

another where the nestate is the same as the old orkherefore, when PlanCon

sees certain no-consequence commands it just applies the no-consequence rule and
does not change objectsdikles and directories in the precondition set although the
postcondition set may be changddl.turns out that there are commands in some
operating systems which can be concatenated in a multi-commainonement to
simulate the no-consequence rule. Fxaneple, commands canveateir efects

reversed if thg are followed by certain other commands.

In summary we hae defined six rules of inference which can describe opera-
tions on action frames. The rule of composition is the only rule whicvies mul-
tiple actions. All the other rules relate to single actions. Some may argue that the
first and second rules of consequence are not really inference rulesGerédlinly
some of the other rulese inference ruleslt is our belief that objects such plsin
filesshould not be stored as plain files but as types of @ilech information can be

located in an object hierargland that process is called inferencing.

In building the understander we try to store as little information as possible and
derive rew information when it is needed. That is enmimum-stoage pinciple.
It may be the case that some combination of the six inference rules is needed in
order to build domain-specific representations to match a user. glieeyorder of
application of combinations of inference rules may be important. This will need to

be investigated.

4.13. A justification of the minimal-storage principle

We hope to include a learning component callec€Conin the understander at a
later stage. This component will be similar to the component calleddhEr in the
UC system (Wensky et d., 1986). The componentould allov any user to update

knowledge in the understander through a natural languagesicéerinowledge that

60

could be updated includes addingmaction frames or object frames or updating
existing ones. Inference rules could be updated or orees added to the inference
database. Wae not so nake & to lelieve that six is a magic inference number at
all. In ary case for an update system it would be nice if alvldedge was kept in

the same place in the understandénen, we must justify whwe dose to hee

three types of knowledge in different places which may hamper updating. That is,
why did we choose to separate out Wihedge into object frames, action frames, and

inference rules?

We lelieve tat it is easier to keep the static data representation (action frames)
small and use information from another static representation (object frames)
together with inference rules tamand the scope of action frames. The system will
become more efficient, as it is easier to match small frames containing localized
information, and infer on that local information, than to search through large frames.
We havecome to one major conclusion whileve®ping this research. In general
we argue that [action-frames + object-hiergrehinference-rules] is better than [
ACTION-FRAMES] or even [ACTION-FRAMES + object-hierargh] for ary

system.

4.14. Other work on representing inference

The action frames for Transfer Semantics are described as plans in much of the
literature (see Fikes & Nilsson, 1971; Carbef§83). Carberry(1983) describes
plans containing preconditions, partially ordered actions and effects. This is also a
good description of our action frames. The rule of composition for building multi-
command environments is similar to what Carberry cgtibal plan contet. Each

individual command environment which may be used to construct a multi-command

OBy using upper case characters we hope to emphasize that terms refer to action frames containing a
large number of conditions.

61

ervironment is what Carberry callslacal plan contgt. Carberry describes her
work in the wider context of dialogue understanding and we hope to apply the rule
of composition in this area. Kautz & Allen (1986)\kakfined a structure for mod-

eling concurrent actions.

The UNIX Consultant (UC) program (Wnsky et d. 1984, 1986) hasarious
elements of inference embedded within it. The UC system is divided animus
components. Theomponents called ASAN (Plan And Goal ANalyzer) and
UCPlanner imolve procedures closely related to what we talk about in this Chapter
The FAGAN program hypothesizes the plans and goals under which some user is
operating. RGANs knowledge representationvatves planfors These are rela-
tions between goals, and plans for achieving those goals. Each plan is a sequence of
steps. Therefore, plans in thA@®AN component can be compared to multi-com-
mand environments in OSCON where a number of commanbements are con-
catenated to produce some effece i¥fer with the UC approach on one issue as in
PlanCon goals and plans are generated dynami&ath plan or command &n
ronment is generated dynamically using rules of inferenee action frames and
input text. Thatis exactly wly we reed the inference rules describedvaboret, in
PAGAN the steps of all plans are already stored statically in memory in a planfor

database.

UCPlanner has the function of determining a fact that the user woeldblik
know. The domain planner tries to determinewhto accomplish a task, using
knowledge about UNIX and kmdedge about the userlikely goals. UCPlanner is
a knowledge based common-sense planridre planner creates plans for the user’
UNIX goals. A goal detector is used to dete@rwus goals that are necessary to
complete in order toxecute some user goal. Goals may be detected automatically

For example, ner goals may be detected during the projection of possible plans.

62

This will happen if the planner notices some plan would fail when some condition is
not satisfied. A ng goal would be produced by the planner to satisfy the condition.
Other goals that may be detected include background goals such as access to files.
The goal detector finds goal conflicts such as deleting files whiah fnatection.

Stored plans»ast in the system and these are similar to the action frames from

Transfer Semantics.

In UCPlanner plans are selected and thislires two processes: (1) meplans
can be devied, and (2) a process of plan specification fills in each general plan with
more specific informationA process called projection is used to test whether a
given plan will execute successfullyThis is a test for possible problems in the plan:
(1) conditions to be satisfied, and (2) possible goal conflicts to be resolved because
of the effects of that plan. Thisviolves three processes. The planner contains
defaults to help in simulating some plan. These defaults may not be supplied by the
user Defaults would be to assume such things as files being text unless otherwise
specified. Other processes include condition checking to ensure that plan conditions
are satisfied in the system, andvrgoal detection where effects may arise which are

not part of the uses’goals.

In PlanCon ne& plans are deved using the rules of inference and general
plans can be filled with more specific information from the object higraiidte
process called project in UCPlanner is similar to the command-environment genera-
tor mentioned abee. We ae in agreement with Wénsky et d. (1986, p. 50):

“ However, to answer more interesting problems it is necessary to be ablaltb b
new plans from existing plans. It would be impossible and undesirable ta amde
appropriate plan for each of the possible queries that a user migtit Tidat is

exactly why we use inference rules in PlanCon.

63

The SINIX Consultant discussed beike (1986) contains a rich kmdedge
base similar to thatréinsfer SemanticsLike Transfer Semantics the SINIX kb
edge base consists of a taxonomical hiesaoflconcepts. The le&s of the hierar
chy correspond to SINIX objects or commands. High&elleoncepts reflect more
general actions or object$n Kemke (1987) we are told that a Plan Generator will
use a formal semantics of commandsnie says (p. 218), “The formal semantics
description should be able to be used bilan Geneator in order to construct
“ comple actions’, i.e. plans, if the desired state or action specified in thesuser’
guestion cannot be realized using a single command but, instead, through a
sequence of commantisShe talks of being able to describe théeefs of com-
mands by using a set pfimitive or basic actions. That is exactly what we hope

PlanCon does using the Rule of Composition.

The COUSIN system deloped by Hayes (1982) and Hayes & Szekely (1983)
has interesting similarities to our work. COUSIN can provide dynamically gener
ated, contextually sensig explanations about the current state of user interaction
with the system. COUSIN only generates these dynamic help frames if the user
makes a request for help without giving the name of some static knowledge frame.
We @an do this by using the rule of composition. That rule generayesoammand
ervironment by concatenating or interconnecting vidiial command edron-
ments. As COUSIN is a commanddkinterface, each stage of user interaction will
be eecutable, whereas with PlanCon command environments are representations
used by the system to understand user quefibgy are representations of what

wouldhappen if the usexecuted certain commands.

Sandavall & Ronnquist (1986) define a representation for action structures
very similar to our an. Eachaction structure is defined in termsm&condition

postconditionand prevail conditions. Preail conditions must hold for the duration

64

of some action.An action structure (multi-command environment for us) isveck

as a set of actions (single-command environment for Hagh action has a start
point and an end point. These would be the preconditions and postconditiogs in an
multi-command evironment. Thg havedone an interesting job on\wdo formal-

ize sequences of connected actions. This will be useful for doing parallel command
operations. Itis easy in UNIX to be doing one thing while numerous other pro-

cesses are going on. Such processes are called background or child processes.

Alterman (1986) describes an adaptdanner which takes advantage of the
details associated with specific plans. The planner still maintains the flexibility of a
planner that works from general plans. Alterman tells’/Aglanner that has access
to general plans (alternetly abstract or high-lel plans) is flexible because such
plans will apply to a large number of situation(§. 65). That is exactly whwe
have defined the rules of inference at a genenadllen the discussion alve. Alter-
man makes aery important point that if we use a general planner then plans must
be recomputed for specific plans and if one uses a specific planner there is a wealth
of detail and there are problems withxitelity. His adaptve danner uses informa-

tion from both specific and general plans.

Alterman’s gpproach is different from our own. He be#s that specific plans
should be stored and called up on demand. Then the specific plans can be tuned to
the particular situation or context at handwdeer, we believe that is easier to com-
pute specific plans on demand rather than to store théencb that because there
are so may specific plans that it is impossible to store them all, v@nea good
enough set, to @r enough situationsAgain, this is ouminimal-stoage pinciple.
Alterman defines a process of abstraction which vemdetails form a plan. This is
similar to our process of weakening postconditions for some plan. He also describes

specialization as nving from a more abstract plannards more specificxamples.

65

This is similar to strengthening preconditions in PlanCon. Adaganning is in

effect the application of the first and second rules of consequence and the AND and
OR rules. The first rule of consequence defines specialization while the second rule
defines abstractionHowever in PlanCon we define preconditions to be weak and
postconditions to be strongiVe gavegood arguments for doing that. This useful

distinction is not made by Alterman.

An interesting discussion on hierarchical representations of causalekige
is found in Gabrielan & Stickiye(1987). Thg define a formalism for hierarchical
causal models which provides explicit representations for time and probabities.
system is defined in terms of a set of states and transitions among those states. A
state is considered to be a complete or partial description of the system at a moment
in time. Transitions define ochanges in the system occAn explicit representa-
tion of a transition or action can be defined explicitly in terms of start states (precon-
ditions) and end states (postconditionEhey introduce a number of formal defini-
tions to construct a precise formulation of a hierarchical causal mbd#ieir for
mulation more than one state can bevacti any one time and manparallel transi-
tions can occur simultaneously and asynchronouBlys is all related to the com-

mand environment generator.

Minsky (1975) also notes that we need some method of applying transforma-
tions between frames in a system. He says, “I do not understand the limitations of
what can be done by simple processes working on frames. One could susedy in
some “inference-frame technique” that could be used to rearrange terminals of other
frames so as to simulate deduetiogic” (p. 229). We wse the rule of composition
to build nev structures from action frames already existing in the system. Our infer
ence rules are similar to what MiyskL975) calls “formal operations”. He defines

formal operations as, “...processes that can examine and criticize our earlier

66

representations (be thérame-like or whatever).” (p. 230)

Elements of the rule of consequenceréhaso been described a®nable-
ment’ by Pollack (1986). Her example demonstrates that in a mail system some
user may type HEADER 15 and tlesableshe generationof deleting the fifteenth
message by typindDEL .”. This happens because typing HEADER 15 esak
message fifteen the current message to whithrefers. Pollack only considers
what she callsimple plansvhich are a restricted subset of plans. Simple plans are
those plans where the agent bedgethat all the actions in a plan play a role by gen-
erating another actionThat is, the plan includes no actions that the userveslie
are related to each other by enablemeimple plans can easily be generated by

PlanCon.

4.15. Inference, parallelism and beliefs

In this chapter we v& described inference rules which will seléome of the
problems in Tansfer SemanticsWe dowed that a knowledge representation for
operating systems called Transfer Semantics will reokwvithout inference.This
was done by providing natural language forms that could not be processed by the
natural language understandd@ihe next step was to describe some general rules of
inference that could be applied to action frames so that the framéd work for
each of the these forms. Those inference rules were called (1) The First Rule of
Consequence, (2) The Second Rule of Consequence, and (3) The Rule of Composi-
tion. We defined three more rules called the AND, OR and No-consequence rules.
The AND and OR rules provide necessary ariitgiehcy requirements for frames.

The no-consequence rule allows us to specify commands which wl roareal
effect on objects in the commandveonments. Thdanguage of each inference

rule has been borrowed from axiomatic semantics. This semantics has been used to

67

provide formal descriptions of programming languag®¢e cose that semantics

because of its clarity and waage.

It is a significant feature of Transfer Semantics that theistsea number of
inference rules enabling manipulation of action frames. Therefore, by using the
object frame hierarghand these inference rules an action frame can circumscribe a
large quantity of domain-specific relationse\Waveshovn the usefulness of infer
ence rules of consequence and compositildme consequence rules enable the sys-
tem to infer more detailed or less specific objects from an object higrafoibed-
ded queries wolving mary concepts can be interpretedeetively on application of

the composition rule.

It is concluded that the six general rules of inference are necessapainde
ing the scope of rfnsfer SemanticsiRememberthe problem with Transfer Seman-
tics is that only preferred conditions are specified in frames. The inference rules
allow the system to infer stronger and weaforms of preferred objects that are not
represented in framesdowever, we havenot tackled the problem of the ability of
people to ask questions about actions running in parallel. The system needs some

understanding of parallelism. This will be discussed in Chapter 5.

In this Chapter we Iva rot worried about problems of the distinction between
what the user and system beég. That distinction is discussed by Pollack (1986) in
a paper on plan inference. She proposes that models of plan inferencevérsaen
tion must include this distinction. If this does not happen plan inference will fail as
will the communication that it is meant to support. Pollack has implemented a plan
inference model in SPIRJTwhich is a small demonstration system that answers
guestions about computer mail. She makes a neat distinction betotelgpesand
actions Act-types are types of actions and correspond to what we call action

frames. Actionscorrespond to specific actions to askieome act-type. For

68

example,cat and more are actions specified in our PRINT frame where the frame
itself can be thought of as an act-typWilks & Ballim (1987) hae poposed a first
implementation of abelief engine’ called ViewGenthat contains heuristics for the
default ascription of belief. Whope to include an instantiation of this belief engine
within the understander to model the interaction of system and user planning on the

basis of differing beliefs and plans.

Chapter 5: Planning in parallel

In Chapter 4 we talld about a plan generator called PlanCon which is used in
understanding plans appearing in user queries. An important inference asille w
defined to ta& care of maw action queries. That rule was called the rule of compo-
sition. In effect the rule acts as a plan generator which concatenates actions together
in various ways. Queries likeHow do | nroff a file and then print it on the Ima-
gen? are understood using the plan generatdthough a general rule of composi-
tion was defined, there are nyadifferent ways it can be used. This is not surprising
as this rule is very significant inyagystem. In Chapter 4 the rule of composition
dealt with sequential action setdowever, when people ask questions about operat-
ing systems themention the recution of parallel actions. Commands running in
parallel in multi-tasking operating systems such as UNIX can be formalized with
some n& rules. Lets recap on the Rule of Composition and continue to define

some ne rules.

5.1. A recap on the rule of composition

Sometimes people ask questions about operating systems where more than one
action is mentioned. Foxample, a user may ask;low do | detect misspellings in
a file and more them?Here, the user has mentionedteetions, one fodetecting-
spellingsand the other foprinting them. W defined a rule of composition which
prevents the frame selection mechanism from selecting between different
frames where it should ta ®lected both.The general form for the rule of compo-

sition is as shown belwin Figure 5.1.

69

70

{{P} AIQE QAR
PHA<AIR) J°

Figure 51. A recap on the definition of composition.

This general formula states that if {#;, {Q} is true, and {Q} A, {R} is also
true, then we can infer {P}A; < A;] { R} to be true, too. In effect, this rule speci-
fies that the postcondition set found by applying a number of actions in sequence
will be the postcondition set deed by gplying the postconditions of graction in
the sequence as preconditions to a subsequent aétiomore specific formula for
the query“How do | print a listing of system users on the laser printer®’'T1own

in Figure 5.2.

s User

{P} WHO {Q}, {Q} PRINT {R}
{ {P} [WHO < PRINT]{R}

Figure 52. Applying the definition of composition.

This formula tells us that if the postcondition of the action frame WHO is
applied as the precondition to PRINT then it is inferred that the postcondition of

PRINT is the postcondition ofxecuting both actions. In this case we had tw

71

actions to deal with. Sometimes there may be three or more actions mentioned in a

user query.

When more than tw actions are mentioned in a query we must regdsi
apply the rule of composition. Say for example, weehtie query “How do |
delete a listing of my directory from the printer queueRueries lile this do not
appear often, though we should cater for them. There are three actiolvedn
here,deleting listing andprinting. The object or data being manipulated is a direc-
tory. Initially the listing action is applied to the directptiyen printing, then delet-
ing-from-printer Agan the theory of embedding is used to describe this sequence of
commands. The embedding set for this query(dg ectory) LIST < PRINT <
REMOVE |. List is embedded inside print and print is embedded inside delete. The
operate on directoryFigure 5.3 represents the operation of listing and printing on a

directory.

: User

{,.directory,,} LIST {Q}, {Q} PRINT {R}
{ {,,directory,}[LIST < PRINT]{R}

Figure 53. Applying composition to LISTING and PRINTING.

The abee wle of inference specifies the use of the actions LIST and PRINT
over a drectory file. The REMOVE command must still be applied to aehiee
complete effect of the sequence [{P} LIST {Q} PRINT {R} REMOVE {S}]. &V

shaw this in Figure 5.4.

72

: User

{P} PRINT {Q} , {Q} REMOVE {R}
{ {P} [PRINT < REMOVE]{R}

Figure 54. Applying composition to PRINT and REMOVE.

Figure 5.4. shows that the postcondition {Q} froreauting PRINT is passed
as a precondition to REMEE which gves the postcondition R. ¥rote here that
PlanCon must dere te correct postcondition {R}, from the RENE action
frame. Therule of composition may be appliedyamumber of times to run a whole

sequence of commands.

5.2. Piping as composition

The UNIX operating system allows usergptpe commands together where the
output of one command becomes the input of anotiherstring of commands
hooked together is called@peline For example the pipeline commanitho | wc
-1, will answer the user queryHow do I find out hev mary people are logged in?’
Whois a command which produces a list of users logged inwarn@ord count)
with the -l option counts the number of lines in this list, which has one line for each
user Piped commands or pipelines can be represented by the Rule of Composition
(ROC). Thequery “How do | find out hev mary people are logged in?can be
represented by Figure 5.5.

It turns out that WHO is a command which does nethany equired precon-

ditions but produces a postcondition {Q} which is a list of users logged here

73

: User

{true} WHO {Q}, {Q} WORD-COUNT {R}
{ {true} [WHO < WORD-COUNTHR}

Figure 55. Applying composition to WHO and WORD-COUNT.

are no required preconditions because therenigyalat least one person logged in
— the user himself. This is a good precondition to word-count which produces the

postcondition {R}.

To demonstrate the meerful utility of pipelining we will shav how four com-
mands could be concatenated togeth&r example, the pipeline command lvelo
will produce on the laser printer a long listing of all tiex files whose name con-

tainspaul:

Is -l /usr | grep paul | sort +3nr | Ipr

The files will be sorted in verse numerical order by the fourth field of the list and
printed on the laser printekll this can be represented by the ROC. In fact, washo

the quadruple concatenation belo

The three command einonments in Figure 5.6 sthhowhat happens when the
four commands LISTGRER SORT and PRINT are used together in a pipeline. The
ROC must be applied three times to derifinal postcondition set {T} from initial
postcondition set {/usr}. W havea representation of thexecution for {/usr} [LIST

< GREP < SOR < PRINT] {T}.

74

: User

{Jusr} LIST {Q}, {Q} GREP {R}
{ {Jusr} [LIST < GREPR}

{Q} GREP {R}, {R} SORT {S} . User
{Q} [GREP < SORTIS} '

{R} SORT (S}, {S} PRINT (TR |
{R} [SORT < PRINT] {T}]} Ser

Figure 56. Computing quadruple composition.

Except for the first and last commands in a sequence all commands are called
filters. So, in the abee example GREP and SORare filters. By no accident we
note that PRINT typically occurs last inyacommand environment, and LIST typi-
cally occurs first. This happens because the frame for LIST contains a command
calledIs which does not accept standard inpulso, PRINT contains the com-

mandlpr which does not write to standard output but to the laser printer.

5.3. Redirection as composition

Redirection of standard input and standard output is common in the UNIX
operating system. A user may askjow do I list my files and put them in a file
called paub-file?” This can be done by using the commé#ned > paul’s-file, and

the>[Joperator redirects output to pafile rather than the screen. The ROC to do

[0“ Standard inputis a UNIX term referring to the source where input to commands comes from. The
source is defined, by default, to be from the terminal although this default can be changed.

OThe redirection operatof>" i s bolded so as not to be confused with the embedding op€tator

75

this is shown in Figure 5.7.

{files, } LIST {Q} , {Q} > {R}

{files, }[LIST < >] {R} - User

Figure 57. Applying composition to redirection of input.

The symbol> although not really a command acts as one, and transfers stan-
dard output to another locatiorit is also possible to redirect standard inpEitr
example, in the query*How do | mail a file to Afzal? the commandmail
afzal@nmsu < filewvill do the job Standard input is redirected to come from file
rather than the terminal. TheOR also deals with redirection of standard input and

this is shown in Figure 5.8.

s User

{file} < {Q} , {Q} MAIL {R}
{ {file} [< < MAIL] {R}

Figure 58. Applying composition to redirection of output.

In Figure 5.8 we shw how redirected standard input is passed to mail which
produces a postcondition {R}. It seems that th@Ris capable of doing mgn
types of sequencing and is very wide rangingwel@r, there are some operations

which the ROC does not cater for yet.

76

5.4. Limitations of the rule of composition

The rule of composition isxeensve yet will not handle the queryHow do |
find a job number and then Kkill the job?n this case the user needs to find a job
number (one action or command) and then Kkill it (another action or command).
However, the output of one command is not passed as the input to the dtreer
difference with this type of query is that the user has specified a concatenation of
commands that are not usually concatenated togeTier KILL frame just needs

some of the information from the FINDING-JOB-NUMBERS frame.

We reed to define a meinference rule, wolving some type of composition,
i.e., a variation on the rule of compositionhe rule will specify sifting of informa-
tion from one action to be passed to anothirere will surely be mgnways of
sifting information from commands. One can easily see that it would certainly
be nave b suspect that six general rules of inference was enough. Our next job is to

locate and specify meand interesting rules of inference.

5.5. A selectie rule of composition

Say some user asks the questidtiow do | find a process and kill it?Here
we hare wo actions mentioned in the input quefinding-a-procesandkilling-a-

process As the ROC stands it would compute something FHgure 5.9.

Of course this is incorrect as it isnhe complete output of FIND-RFCESS
that is passed to kill, but a seleetigece which is the job numheOtherwise the
rule would specify killingall processes. Wnust define the selection or filtering of
output from certain commands which is used as input to other commands or actions.

We cefine a ner rule, shown in Figure 5.10, called tkelective rule of composition

(ROG).

77

{ {P} FIND-PROCESS {Q} , {Q} KILL{RF] . .

{P} [FIND-PROCESS < KILLKR}

Figure 59. Applying composition to FIND-PROCESS and KILL.

{PYA{Q}, {Q} s A{R} 1 . U
{P}[AL<g A2] {R} '

Figure 510. Definition of the selecte le of composition.

The general formula states that if {R} {Q} is true, and{Q}; A, {R} is also
true then we can infer {P}4 <g As] { R} to be true too.The rule shows that it is

only a subset of {Q} fromA, that is passed to the second aci#gn

5.6. A composition rule for parallelism

Another problem occurs when a user wishesxezue background processes
in some multi-tasking operating system. Each rule of composition defined so far has
been purely sequential. The output of each command, or a subset of that is passed to

the next command in the sequence.

Say some user asks the quélyow do | print a file in the background and edit

a file in the forground?’ In that case the user is talking about running &ations

78

in parallel. The rule of composition does not cater for thig &fine a ne rule of
composition called thparallel rule of compositiofROG,). This is shown in Figure

5.11.

{ {P} A, {Q} {P} A, {Q}) U
{PVP}[A A 1{QVQ} S~

Figure 511 Definition of the parallel rule of composition.

In Figure 5.11 we shwthat the tw actions A, and A, run in parallel and the
preconditions for each action are ORed together becaugddhie exist. Thisis
also true for the postconditions {Q}. This rule of composition is verg file OR
rule described in Chapter 4. Of course, the difference is that the OR rule is a single
action rule, whereaROG, is a double action rule, i.eROG, includesA; and A,
whereas the OR rule only has A. Of course, if weelfg equal toA, in Figure 5.11

thenROG, translates to Figure 4.13 (OR rule).

Any command environment representiRPC, will have a sib ewironment
running in parallel to the master environment. It may also be necessary to specify
communication between data elements or objects in parakeltons although
this is doubtful. For xaample, in UNIX it is not advisable to alter files or other
objects in both background and foreground proces#é&srow havethree rules of

composition:ROG,, ROG, and ROG,. Howeve, that is not enough.

79

5.7. A composition rule for forking

There is another concept for which we must define a rule of composition.
Some user may wish to pass the output of a command to more than one location at
one time. This is calletbrking and irvolves both parallelism and sequential opera-
tions. For example, a user may want to wntHow do | list a file both on the
screen and into a directory file?’his can be done bis | tee dirfile The command
tee places the output of list in twlocations,dirfile and thestandad output We
need a n& rule to handle forking and it is called tiierk rule of composition

(ROG). This rule is shown in Figure 5.12.

U

{{P}A{Q}’{P}AY{R} :
{PYA<Ay] {QVR}H S~

Figure 512 Definition of the fork rule of composition.

This rule shows thatxecuting ary fork command in a sequence will cause

forking of the preconditions {P} to ge the postcondition in tarlocations {Q} and

{R}).

5.8. A composition hierarchy

We havenow defined four rules of composition. The first callR®G, was a
general rule specifying no detail as toshcommands were linked togethé&ext,
we defined the selewt rle of composition calledROG which passes seleeti

pieces of postconditions from one command too anoffeis was followed by the

80

parallel rule of composition calleBOG, which allowed the composition language
to describe actions running in parall&Ve further extended the depth of composi-
tion by defining the fork rule of compositioRQG). We show a hierarcty of com-
position in Figure 5.13.

ROG, (General)

ROC, (Selective) ROCG, (Parallel)

ROGC,; (Fork)

Figure 513 A graphic hierarci of composition.

ROG .3 are an gtension of the depth of composition rather than its breadth.
We havedefined each rule as there needs to be a definition of the spyo#sof
composition in the system somewhere, and that is brought out by defining clearly
more specific instances of compositidih.is possible to pree that ROG ,; are alll
collapsible toROG, under certain conditions. That is good because it shows that
ROG has in its definition the inherent elements of compositibns possible to

demonstrate subsumption BOG, of the different rules.

81

First of all we shar that ROG, subsumesROG;. RememberROG, described
parallel composition an@ROG; described forked composition. Taking Figure 5.11
denoting ROG,) we aubstitute {P} for {P'} everywhere in the equation. &Vget
Figure 5.14.Now, {P \/ P} collapses to {P} and we get the fork rule of compaosition

ROG,.

{ {P} A, {Q}, {P} A;, {Q} U
{PVPHA A 1{QVQ} S

Figure 514. Equivalence of parallel and fork composition.

It is also possible to shothe parallel rule of compositiolROG,) as a pecial
case of the general rul®QG,). If we tale Fgure 5.11 and letR'} be {Q} every-
where in the equation then we find Figure 5.15. facgfthis means that the precon-
dition of one of the parallel actiong\() is the same as the postcondition for the
other action £). InFigure 5.15 PV Q} can decompose to {P} andXV Q}can
decompose to@}. This would happen when twactions run in parallel and only
one of the preconditions exists ({P}) and only one of the postconditions eQi¥ts (

We cet the general rule of composition as shown in Figure 5.1.

Now, we haveshavn thatROG; is a special case ®#OG, andROG, is a spe-
cial case oROG,. It follows thatROG; can also be a special caseR#®DG,. There-
fore we hae down that for certain casd®0G, ; are equialent to ROG,. Trivially,

ROQG translates t(ROG, when is 0. ThenQ could beQ- i.e.,{Q}; would be

82

{ {P} A, {Q}, {Q} A, {Q} U
{PVQHA A I{QVQ} S

Figure 515. Equivalence of parallel and general composition.

{Q}. The formula forROG then collapses to Figure 5.16. Figure 5.16 is\atpmt
to Figure 5.1 ROG).

{ PrA.{Q}. {Qt A RF |
{P}[A1 <Az]{R} '

Figure 516. Equivalence of selecte and general composition.

We nmust emphasize that the various rules of composition are a desaegti
resentation of procedures in the system which manipulate action frdmem
inference module it would be necessary to also define a higrarcluding each
ROC. Thenext question that must be answered iswhioes the system ko
which rule to apply? The general rule of compositiooulst be tried first, then
probably selection, and then the parallel rules. That is just a conjecture and empiri-

cal studies may pwe us wrong.

83

5.9. Other work on plan hierarchies and parallel planning

We havenow defined a hierarghof inference rules for the rule of composition
and there are also Ve five dher rules of inference. The hieraycéilows PlanCon
to understand complteplans and goals in user queries. Hierarchies of component
goals and actions for domain-dependent plane laen used by Carberry (1983).
Litman and Allen (1984) and Pelavin and Allen (198 A)ehdso developed a model

based on a hierarglof plans and metaplans.

Litman and Allen (1984) discuss the modeling of plans of speakers in task
domains. The devdop a model based on a hierayabf plans and metaplans that
accounts for clarification subdialogues and topic changey Gdmsider plans as a
network of actions and states connected by links indicating causality and subpart
relations. Each plan hashaader which names the plan aparameterghat exist in
the headerPlans also hee a &t of constraints which are assertions about the plan
and its terms and parameters. Plans may also cquaiequisitegpreconditions),
effects(postconditions) andlecompositionsequences of actions)lhey give an
interesting account of moplans may be linked together in a plan hiergnathich is
useful for understanding sentences input to a gturdé understandeifhey use a
focus mechanism to direct the planner through a hieyathlans. Itis our intent
to add a focus mechanism to the system at a later date. The Litman and Allen plan-
ner is intended to be a more general planner for general language understanding
whereas PlanCon is intended to be characterizing the specific operations that people

can do with actions, and in particulamhpeople can compose various actions.

Pelalvin and Allen (1987) describe a model for concurrent actions with tempo-
ral extent. The describe a semantic structure which provides a basis for defining a
semantic structure for describing interactions between actions, both concurrent and

sequential, and for composing simple actions to form compies. It also treats

84

actions that are influenced by properties tixéteand ®ents that occur during the
time that the action is to bexesuted. Ongheme of their approach is to capture
what is happening while awent is occurring. Thedirectly treat gents affected by
conditions that hold duringxecution. For example, thevent of “sailing across the
lake™ is described which can only occur if the wind iswing while the sailing is

occurring. Compositiors defined in terms of a formal logic notation.

Sandavall and Ronquist (1986) consider structures for actions which are par
tially ordered for time and which may occur in parallel. yrdeow how concurrent
actions can be dealt with by using a petri-net approacty fdiate their work to
theories and languages of concurrent programmigain, this work relates to the

function of PlanCon.

Chapter 6: M eaning representations

So far we hee keen discussing a knowledge representation for operating sys-
tems, and he this representation may be used to understand natural language
gueries. Hwever, we have not discussed the meaning representation that English
gueries are parsed into, orvihdhis meaning representation chooses the correct
frames. Thgob of the parsing process is to parse natural language input into a good
meaning representation. One of the first questions we must ask ourselves is what

type of queries do people ask.

6.1. The nature of queries about operating systems

A good way to understand the requirements of a natural language understander
for operating systems is taitd a good theory of the way people use English to ask
guestions about these systerifghen people ask questions about the UNIX operat-
ing system the often refer to a number of interrelated actions. Numerous objects
are associated with these actioR®r example people ask questions likéjdw do |
print a file on the Xerox with pageheaders?”,'biow do | gell a file and then ha
the mistakes printed on the ImagenThe former query has one action, that of
printing and the latter has twections that offinding mistaksand that ofprinting-
on-Imaens Of course, some queriesv@ro actions at all. These are querieslik
“What is a file?’or **‘What is a pipe?’ Such queries are static andvaive answers

which are descripte rather than dynamic.

Therefore, operating system queries are about the dynamics of the system, i.e.,
gueries about actions such as printing, rémp or deleting; or about the statics of

the system, i.e., queries about static objects such as files, file-structure, pipes, and so

85

86

on. In Section 4.7 we called the formdynamic queriesand the latterconcept

description queries

If dynamic queries did notxest, then it would be easier to build an operating
system consultant. All we would & © do is to gore a manual about operating
systems in OSCON, and if a person asked a question aboutlesyhe system
would just print out ay information about files.However, people ask questions
like, “How do | print a file on the Imagen with pageheadénsPiich involve actions
such asprint, and constraints on those actions suchfits and Imagen and
pageheaders Therefore, it is necessary tovép some mechanism whereby mean-
ing representations for multiple action queries can be integrated in a sensible man-

ner. That is what this chapter is about.

6.2. A tutorial on thetheory of embedding

We @n assume that pmuery about operating systems includes a number of
actions (which may be zero) and objects manipulated by those actignse@ning
representation of a query must contain in some semantic form the actions and
objects and he these are related togetheConcept description queries e
actions at all. Dynamic queries contain one or more actions. Dynamic queries with
one action are represented without mucHiatiity. In the meaning representation

we can just include that action andyabjects related to it.

Dynamic queries containing more than one action are more difficult to deal
with. Thereneeds to be some way of relating actions togethet’s look at some
more examples. InHow do | send a trdfffile to the Imagen?there are tw actions,
troffing-a-fileand thersending-it-to-the-Imgen. In the query“How do | remove a
file printing on the Imagen?there are also twactions. Those arprinting-a-file

and thenremoving-it What do we notice about the actions in each query? Each

87

action is related temporally to other actions in the quene action is xecuted

before another and the ordering is important. Certain actions operate on objects and
change their states. Other actions come along later in time and transfer object states
into nev ones. V¢ think of natural language queries in terms of actions processing
objects in time. A good way to represent such actions will beep khat notion of

time as it is important. Actions can be sequenced or embedded within one.another
Actions are black boxes which &kbjects as input and produceanebjects as out-

put. Each set of actions is looked on as being an embedded set.

The theory of embedding seems to be a good daanderstand queries about
operating systems we need to be able to recognize actions and objects in the input.
We reed to represent the meaning ajrds if the system is to determine whether
words in input sentences are actions or objedtsnechanism should matchonds
in the input to their meaning representations. That mechanism should determine
whether words are actions or objects. Then there must be some processor which uni-
fies or concatenates word representations togethesltbdnmplete meaning repre-
sentations of whole queries. Such complete meaning representations will capture the

temporal relations between various actions and their objects.

6.3. The components of a meaning representation

To determine whether @rds in the input are objects or actions we need to rep-
resent the meaning of words in the system. Therefore we rdietiomary of words
which tells us the type of eaclowd. So,print will be represented as an action and
so will deleteand move Files and directorieswill be typed as objects. &uild a
dictionary with entries li& (file location objectland (print action), (directory loca-
tion object)and(user actor) Notice thatfile anddirectoryare also marked as being

specific types of objects i.e., locations.

88

The next problem we mustosry about is ha to define allavable operations
of actions. We dould build some structures which represearious actions and
how they relate to objects. Such structures would recognize incorrect operations of
actions. Adatabase of patterns is defined to represgat éetion operations. &-
terns are semantic templates fopected lgd actions. W\ nstruct a pattern
database with entries 8observe-obj <person> <object>)This entry tells us that
a legd sentence could include actors observing objects. Thus the, (itiayw do |

see a file?would match this pattern. &tan call the patterrasction templates

To huild meaning representations for sentences, we need to be able to link
action templates together by some meafsdo that there needs to be some precise
definition of what each action template means. Each action template sheeilghha
associated meaning structur&uch meaning structures should include actions,
objects related to actions, types of those objects, and actersalVguch represen-

tationsdeep case structuresd one is shown in Figure 6.1.

(observe-obj ((actor _[)
(description _))
((object)
(description _))
((location)
(description _))
(frames print list))

Figure 6.1. Case structure for observing objects.

OWe wse the symbol “’'to denote an unfilled slot in a case frame.

89

Figure 6.1 is a case structure which tells us that to obserdbject there can
be an obsewrr, an dject of observation, and a location for the obagown to occur
Each entity may hee sme descriptiontagged to it. The case structure also refer
ences tw frames. Thesare the action frames in the system (discussed in Section
3.4.) thatrepresent domain specific knowledge about operating systeonghis
example the frames are print and list which specify printing-objects and listing-
objects respeately. Already we note that domain specific information will be

selected if this case structure is referenced.

6.4. Embedded action representations

As already mentioned, user queries about operating system commands contain
embeddings of actions. It should be possible to create representations of nested or
embedded deep case structures to describe interrelated adiermll such repre-

sentations embedded action representations (EREPS).

Operating system commands are related to each other in spexiic When
users ask questions about such actiony tiseially get these relations correct.
Therefore, if we build EREPs from user queries, the EREPs should be a good
approximation of the relations. This means that domain-specific structures produced
from EREPs should often be correct. In fact, if the domain-specific structures are not
correct the input query also contains relations which are incoriteist.possible to
build EREPs from queries about operating systems and to translate them into

domain-specific representations.

Examples of typical actions which can occur in EREPSs are printing, listing and
deleting. People can ask questions about UNIX suchmsy‘do | print a listing of
my directory?”, or ‘l need to print a filé.1 n the former example we build an EREP

where the concepisting is embedded inside the concgpint and in the latter case

90

print is embedded insideeed These are examples of double embedding. Yet, triple
embeddings result from queries such &w do | delete a listing of my directory
printing on the Imagen?'We will now go on to iow how EREPs can be used to

understand natural language queries.

6.5. Null embedded queries ({A;}i=1)

If a query ivolves no actions, or just one action, then there will be no embed-
ding at all. If we useA; to represent the number of actions in a query then null
embedded queries are denoted{By}-;. Concept description queries are simple
guestions about objects with no presence of operating system aclioasefore,
concept description queries wilkays exhibit null embedding. It is also interesting
to note that concept description queries do not include actors. The reason for that, of
course, is that there is nothing for them to act updtypical example of a concept
description query is the sentence, “What is read protectioi®e action template
(be <object>)is used in deciphering this queryrotectionis defined under the cat-
egory object from its dictionary entry i.€protection object) The case structure for

thebeaction template is instantiated tovgithe structure in Figure 6.2.

(be ((object PROTECTIONL)
(description READ))
(frames protection))

Figure 6.2. Instantiated case structure for ‘be’.

91

Dynamic English queries illustrate null embedding when only one action is
mentioned. Br example, the queryHow do | delete a file?’has a representation
with no embedded actions at all. The query is parsed into the structure shown in Fig-

ure 6.3.

(delete-obj (actor USER)
((object FILE)
(description quantity ONE))
(frames remove))

Figure 6.3. Instantiated case structure for ‘delete-obj'.

6.6. Positively embedded queries ({A}i2)

There are mantypes of embedding present in meaning representations result-
ing from dynamic queries. 8Vhavealready seen that dynamic queries exhibit null
embedding. Hwever they also exhibit positve enbedding which means that the
guery includes more than one actioiNe all queries with tw or more actions pos-
itively embedded queries and yhare denoted byA }i-,. Such queries hae & least
one positre anbedding of one action inside anoth&iso, we hae dscovered that
there are mantypes of positie enbedding and there are nyadifferent ways of

recognizing and processing these.

OlIn the folloving case structure diagrams capitalized items indicate values filled in from dictionary
entries.

92

6.6.1. Explicit embedding

Explicit embedding occurs in representations for querigsvimg two or nore
actions. For example, the meaning representation for the dtieny do | print a
listing of my directory?; has the concept of listing embedded inside the concept of
printing. In processing this quergn observe-patase structure is instantiated to
give Hgure 6.4. An observe-patase structure is selected because the system recog-
nizes that the directoryas first listed and then printed. The user wishes to observ

an object which was already observed.

(observe-pat (actor USER)
(case (observe-obj (actor)
((object DIRECDRY)
(description quantity ONE))
(frames print list)))
(frames print list))

Figure 6.4. Meaning representation exhibiting explicit embedding.

Figure 6.4 shows that deep case representation for listing is nested inside the
representation for printing. The inner case structure is filled out first, and contains
directory as an object, because the actor is asking about listing directbhies.
actor is not filled in yet as the action template for observing an object does not find
an actor in the phrase,listing of my diectory The actor slot in the outer case rep-
resentation is instantiated to be USER. This was found fidow do | print..
where the actor was mentionelah. Figure 6.4 we note that the actor slot in the inner

case structure is not instantiateldowever, this information would be determined

93

from the outer case structure and promoted inwards.

6.6.2. Implicit embedding

Some word in a user query may indicate implicitly tkestence of another
action although this action is not mentioned dire@hy, for example, the system is
given the query “How do | delete malil files?’ Naively, the system wuld believe
that the user just ants to delete an object calliié with descriptiormail. OSCON
would overlook the fact that another action (in this casal) has created the object.
In deriving a meaning representation for thiaraple a first step would be to con-

struct the structure in Figure 6.5.

(delete-obj (actor USER)
((object FILE)
(description quantity MORE-THAN-ONE)
(description type MAIL))
(frames remove))

Figure 65. Implicit embedding I.

Now, to solve the problem of not recognizing implicit embedding, each object
or action could be checkedieey time a representation is produced to establish
whether that object or action refers to another action templatthis casemail is
recognized as being another actidndeed,mail (a description on the objefite)
references the action templaendand its respecte @ase structure. After some pro-
cessing the EREP in Figure 6.6 is computkds noted that in Figure 6.6 the con-

ceptsendis embedded inside the conceptnove The actor as user ixgressed

94

(remove (actor USER)
(case (send (actor USER)
((object FILE)
(description quantity MORE-THAN-ONE))
(frames MAIL)))
(frames remove))

Figure 6.6. Implicit embedding II.

inside each case structure. The send case structure represents the fact that the user

wishes to remee nore than one file from the quantity descriptor.

6.6.3. Shadowed embedding

Often actions such agantingor needingcan shade the UNIX action which
is more important for the system to locatd/e all this shadowed embedding
because a shadowing verb will enclose or sWaaleerb about some UNIX action.
Although we are primarily concerned with locating UNIX concepts, we do realize
the importance of shadowing actions. Such actions are very useful in detecting the
goals of the user (seeiMhsky et d. 1984, p. 589). The direction of reading the
input query is important because shadowing may occur while reading a sentence in
one direction although it does not in the othexamples of shadowing exist in sen-
tences lile “I would like to celete a file”, and “I need to print a file’ On reading
the latter query from left to righteedshadowsprint. Howeve, if the query is read
right to left we getA file, to print, | need? In this caseorint is not shadaed. ‘et,

OSCON reads sentences left to right and therefore it needs to handleiisgado

95

There are action templates for shadowing verbs in the pattern database such as, (s-
verb <person> <pattern>)}-or the query“l need to print a file’'the meaning repre-

sentation shown in Figure 6.7 is formed.

(s-verb (need) (actor USER)
(case (observe-obj (actor USER)
((object FILE)
(description ONE))
(frames print list))))

Figure 6.7. Shadowed embedding.

We rote that the s-verb case structure has only one case slot othacthiacalled
case The actual shadowingevb used in the sentence is tagged onto the EREP as it
may be useful in later processing. For example, such information would be useful

for discovering the intention of the user.

6.6.4. Theintricacy of redundant embedding

Representations with redundant embedding are more a characteristic of the
parsing stratgy than a characteristic of Englisliror example, while parsing the
query “How do | use print to print a file?”, the case structure for observing objects
would become embedded within itself. This happens because of implicit embedding
rules. In efiect, (1) the user has mentioned printing files, and (2) the user has also
mentioned the operation for doing so iint. It would certainly be a mistakio
embed in examples such as this and OSCON mu& Heatggies to recognize

redundant embedding. For thigsagnple the system produces the case structure in

96

Figure 6.8.

(s-verb (use) (actor USER)
(object PRINT)
(case (observe-pat observe-obj) (actor) ...)
(frames FRAVE (object)))

Figure 6.8. Redundant embedding I.

From the previous example of implicit embedding we notice that the systeid w

find PRINT and beliee there should be another embedding ofdhserve-obgase
structure. Yet, this is wrong because the case structure for observing objects already
exists. There must be another rule which recognizes that implicit embedding is not
carried out if there seems to be redungamberefore a counter rule will dictate that
PRINT does not call up another case struct¥e. must be careful in applying the
counter rule tooFor example, ‘How do | print listed files?’i nvdves an embedding

of observe-objnside observe-ohj The inner case structure for listing is referenced
again by implicit embedding techniques and the problem here is that we really do
wish to embed. There seems no way out of all tBigt, look again at thexample

of redundant embedding/Ve rotice that the query contains the shadowiatpuse

and that is what the system needs to look for while applying the counter rule. The
system will correctly represent the quefidlow do | use print to print a file?as
Figure 6.9. It is noted that in Figure 6.9 that objecteeH@en promoted inards

from the query The clause “...to print a filei nstantiates objects in the inner case

structure. Noframes are called fomvd by FRAME (object) because of the

97

(s-verb (use) (actor USER)
(object PRINT)
(case (observe-obj (actor USER)
((object FILE)
(description quantity ONE))
(frames print list))))
(frames NIL))

Figure 6.9. Redundant embedding Il

counteractie rle for redundanc Note havever, that in a query lik “How do | use
print?” FRAME (object) would call forward these frames as/the not referenced

in ary inner embedded case structure.

6.6.5. Negated embedding

Negation of concepts can arise in nyagueries. Thequery ““I can not delete
my file”, is an ample. Usually negdion will occur with triple embedding in
meaning representations. The meaning representation for the latter quenyns sho
in Figure 6.10. In Figure 6.10 the case representatiomoveis embedded inside
notand not is embedded inside a can shadowing case structure. There are no frames

for the not case structure justdikhere are none for the s-verb can.

6.7. The selection of knowledge

As we can already see the case structures, and hence the EREPs, maintain ref-
erences to various action frames. It is the job of a frame selector to work out the

frame(s) most likely for the query in question. This is done by matching information

98

(s-verb (can) (actor USER)
(case (not (actor USER)
(case (remove (actor USER)
((object FILE)
(description owner USER)
(description quantity ONE))
(frames remove)))))

Figure 6.10. Negded embedding.

from the meaning representations to the frames and finding the frame with the maxi-

mum number of matches.

Preferences are used in frame selection processes where the frame with the
maximum number of preferences satisfied is probably the best frame for interpreting
the input. For example, the print frame will v&@ nore preferences satisfied than the
list frame from the query‘How do | list a file on the Imagen?Of course, that is

because one usually associates Imagen printers with printing rather than listing.

It is important to note that only the best conditions are selected while matching
a frame to an initial meaning representation of some quesy each condition we
determine the ratio of matched to non-matched predicates. The best condition is the
one with the highest ratio-or any condition to be best not all its preferenceseha
to be satisfied. Indeed, wewsan Chapter 5 that the process of weakening postcon-
ditions and strengthening preconditions is required because local preferences in con-

ditions are not satisfied.

99

6.8. M eaning representation and surface structure

We havediscussed meaning representations but natthe system gets there
from surface structure. The system willveaa ratural language parser as a front
end to analyze natural language inpWe intend to try out a number of parsers for
the system andveluate the performance of eaclShallov representations of
English queries will be produced by the particular parser in use. Examples of such
parsers are discussed in depth by Ball and Huang in Wilks (1986)xelieve the
process of understanding language to be semantic amdedye-based as opposed
to syntax-based and the algorithms that implement this eploit a notion of

computing the coherence of textual meaning.

One of our parsers exists as part of XTRA, (see Huang, 1985) a machine trans-
lation program, which uses a Semantic Definite Clause Grammar (see Pereira &
Warren, 1985) and the semantics is a modification of that discussedlka W
(1975b) coupled with e relaxation mechanisms. XTRAdistinctive features are
its treatment of conjunctions, its phrase and clause attachment procedures (see
Wilks, Huang & Fass, 1985) and its relaxation features from semantic constraints.
The XTRA system is composed ofdwhases; parsing and generatiore #& only
concerned with the parser from XTRA. The system produces a syntactico-semantic
tree for some input sentence. The format of the tree isweddrom Bougrev
(1979) though the approaches for getting the representation are qtetendif
XTRA produces no ambiguities in its parse tree. In each case slot (see Fillmore,
1978) underneath the verb-sense there are wenses rather than the word from the

original sentence.

Our second parsenialves a semantics-aen concept. Vérk is already under
way on huilding a semantics drén natural language analyzer which addresses the

well-known linguistics problems of language analysis. The justifications for doing

100

this are the problems with pfieus efforts and the need for an adequate semantic
analysis program. Ball and Wilks are currentlpriing on an implementation of
preference semantics using case grammar as a semantic base. The system is seman-
tics driven because input sentences are analyzed to identify and correlate semantic
chunks. Prominent semantic chunks are the action or state and the cases related to
these. An object can be in some place at some time amdneagiion can tak gdace

in some location at some time. Semantics calls syntax to aid in the identification of
semantic chunksSay some agent is expected by the semantics. Then a call is made

to the syntactic component to see if thetnelement of the input can be a noun
phrase. The semantic componexpects certain constituents and uses syntaeto v

ify such expectations.

6.9. Other work on meaning representations

There has been much work on building meaning representations of natural lan-
guage utterances and we can not claim to do justice to all of thoseWsergnall
begin with representations of natural language utterances on operating systems and

then m@e o to more general approaches on meaning representation.

The theory of he to represent natural language queries in the Unix Consultant
(see Wensky et d., 1986) haswlved over a number of yearsinitially, the system
used a phrasal analyzer called PHRAN (see Arens, 1986n3ky et d., 1984)
which read sentences in English and produced representations to decode their mean-
ings. PHRAN contained a kntedge base of pattern-concept pairs where patterns
were descriptions of literal utterances that hadynuifferent levels of abstraction.
For example,<person> <give> <peison> <object>is a phrasal pattern. Each pat-
tern had an associated conceptual template which is a piece of meaning representa-

tion. For é«kample, associated with the phrasal pattarationality> restaurantis a

101

conceptual template denoting a restaurant that serves <nationality> type food.

PHRAN's use of patterns and concepts is similar to our use of action templates
and case structures. Wever PHRAN is a general parser and not specifically geared
towards operating systems. There was no theory of embedding to contend with our
own. Thereforealthough PHRAN was a good general mechanism for producing
meaning representations of English it was not very efficient as a parser of queries

about operating systems.

The latest Unix Consultant implementation (seieWsky et d., 1986) irvolves
a rew parser called ALAM (Augmentable LANguage Analyzer) written by Cox
(1986). ALANA is an etension of the PHRAN parser described\adIthough
ALANA is a nore advanced parser than PHRAN there is no descriptiorvofhe
parser may handle multiple action queriesy Aliscussion of ALAM shows only
how single action queries are handledlgain, there is no description of an alterna-

tive theory that competes with ours of embedding.

Douglass and Hegner (1982) used case frames in the front end for the Unix
Computer Consultant (UCC) system. Case frames were templates representing the
main action of a clause and the constituents of the action, such as the actor and
recipient of the action. The case frames corresponded to logical operations in an
operating system, and therefore formed the main link between English-language
operating system concepts and the formal semantic definitions of specific UNIX
commands. Theroblem with these case frameasathat the were too far remved
from natural language input to be useful and also thasene great theory of o
to combine case frames together to formulate good meaning representations of com-

plex queries.

102

The SINIX consultant wolves a natural language interface which produces
meaning representations of English sentences. Although the SINIX parser (see
Kemke, 1986, Section 2.6.3) uses case structures to build up sentence case frames
we find no description of a theory of aaase structures may be combined- ef

ciently.

Matthevs and Pharr (1987) describe a system called USCSH/didity of
South Carolina SHell) which is an aiintelligent assistance system for UNIX.
Although the dictionary in USCSH contains grammatical information little semantic
information is included, as yet. It is intended that a meaning-structure grammar (see
Chafe, 1970) will be included at a later stage. Their approach to constructing mean-
ing representations of natural language queridvas no discussion of the logical

structure of discourse or temporal ordering of actions.

Although we heae described four approaches to building meaning representa-
tions for queries about operating systems there has been much reseaungtiog b
meaning representations for natural language sentences in general. UBe IR
(Information Retrigal Using the RIS parser) system uses a formal Meaning Repre-
sentation Language (MRL) (see Bates et al., 1986). MRL has a formal deelarati
semantics that can beapmressed in predicate calculus or procedural semantics (see
Woods, 1981). There is no particular theory oo embed sequences of actions

here.

Fillmore (1968, 1977) discusseswoatural language sentences can be under
stood using knowledge in a form of case structuf@sse structures are frames into
which verbs may be parsed. Fillmore concerns himself more with the syntax of
verbs than their semantics. He says Fillmore (1968), “The preceding sectivms ha
contained an informal description of a syntactic model for languadgep.. 61).

Different verbs may link to a number of different frames andxXpaies which

103

verbs are constrained to which cases in which frames. Although Fillmees @i

good description of different verbs and their properties he does not concern himself
with the semantic questions of verbelfkint affecting objects lik filesor directo-

ries. He does not describeyatmeory of embedding where different structures for
various verbs can be liekl togetherHe is largely concerned with single action sen-
tences. Fillmore helps us in defining properties of verbs but mosinch verbs are

integrated in an operating system consultant.

In Fillmore (1968) we hae a dscussion on anaphoric processes. Fillmore says,
“ Anaphoric processes are best understood from the point wfofi@an etended
concept of sentence conjunction. That iere language has ays of simplifying
sentences connected by conjunctions or subjunctions, and the processes used under
these conditions seem too be exactly the same as those used in sentences connected
in discoursé’(p. 56). Although this may be a good argument for understanding
anaphoric sentences we beédhat this heuristic is true of our theory of embedding.
For example, the query'How do | list the files in paul.courses?ollowed by
“How do | print them? in a dialogue interpreter shouldwg the same embedding
as ‘How do | list paul.courses and then print the file§He representation of the

two separate sentences should be the same ay vt connected.

Schank (1975) hasavked on a deep representation of natural language sen-
tences callecconceptual dependencyschank intends a very deep representation
because he wishes toveaa hnguage free formHis representation is similar to our
deep case structures. Schankeory entails a reduction of all utterances to combi-
nations of primitve predicateschosen from a set of twehactionsplus state and
change of state, together with the prirgtcausation and s&en role relations or
conceptual casesSchank sets up case frames for prinaitects as opposed to Fill-

more’s concentration on the surface verbs of English.

104

Wilks (1975a, 1975b, 1976, 1978a, 1978bydigped a natural language
understanding program which parsed English text into deep meaning representa-
tions. WIks’' parser constructed a meaning representation made tgmpilates
having the basic form olgent-action-objectwhich are integrated by the use of
paraplatesandinference rules Thetemplatesare built up fronformulaswhich rep-
resent individual word senses. In the discussion of meaning representatives abo
there is no discussion of semantic formulas because information about esuth w

senses would already be maintained in the parser that analyzes English input.

Our deep case structures areelflks’ templates as thyecontain actions,
objects and agentd/ilks’ idea of building paraplates from templates parallels ours
of building embedded action representations from case structdoegever Wilks
would have dfferent templates for different clauses whereas we onlg tierent
templates for different arbs. Also Wilks talks of linking paraplates with cases,
whereas we talk of linking case structures by embedding them inside each other to
denote temporal relations. In other words, we are talking of using more pragmatic
structures rather than semantic ones. Of course the semantic structures do exist in
the parser that analyzes inpuhnother difference between our embedded action
representations and Wilks’ paraplates is that the EREPs are constructed on the fly

whereas Wilks’ paraplates already exist in the system.

Wilks (1976) maks an important point in that we should only put those cases
into a formula that are necessary to specify the meaning of s &er example a
LOCATION is necessary to specify the meaning of living although it need not be
necessary to specify the meaning of drinkifdnis is the heuristic that we use to
define formulas for the meaning of words in the systélotice that we do notafl
into the trap of doing what Ws (1976, p. 27) argues peopledikillmore, Schank,

and the Generat Smanticists should not daVilks says that theare involved in

105

“...displaying a full underlying structure directiythout the processes that reach
it.” He says, “I argued earlier that each of those thraeegnly a filled-in, or final,
structure which in itself ges no hnts as tohow you get there [his emphasis]’(p.
27). Infact, Fillmore has desloped a surface oriented weof case whereas Schank
uses a deep case representatioitkdNises a representation in between the daad

that is the philosophwe haveused in deeloping OSCON.

6.10. Embedded representations are useful

Embedded action representations are a precise means of formalizing meaning
relations between UNIX actions. English querieiving interrelated actions can
be understood fdctively using these action representations. In particlHREPS
provide a framwork for building domain-specific information about embedded
commands. The most significant feature of EREPs is that becaysadimain an
implicit notion of time, or ordering of actions, there is no need to represent temporal
orderings themselves. These are already inherentlyide by the representation

itself.

It is important in ap natural language system which understands natural lan-
guage queries about operating systems, that there be some mechanism for recogniz-
ing actions, and vo they relate to other actions and objecisle lelieve that the
above theory of embedded meaning representations for actions will be adequate in
this endewor. The inherent structure of the embedded action representations allo
the system to wild up a good temporal ordering of actions and objectgksW
(1986) recognized that this ordering was importanipur representation mustve
the “one after anothérf eature that texts kig, rather than being static and timeless
like most semantic nets.(p. 10). The temporal ordering of actions is a more prag-

matic characteristic of queries about operating systems that lhasm discussed

106

much on other work in meaning representation.

There is much work yet to be done on EREPsr example, we hee rot
defined the rules for matching case structures to output from a,parpeymoting
objects form one embedded action to anotfidérere has been no discussion of the
mechanisms wolved in rejecting incorrect action relations occurring in user
queries. This wuld happen if a user query did not match one of the action tem-
plates. Br example a PRINT action coulduee be rested inside a DELETE action
when thg apply to the same file because if a file is deleted it is not possible to print
the file. However, we reed to inestigate what OSCON should do when such errors
are detected. Early detection of pragmatic user errors will increasdithenej of

the operating system consultant.

Chapter 7: The OSCONsystem

So far we hee dscussed a theoretical design of the natural language-under
stander for an operating system consultavie have not put great effort into
describing the understander as a complete unit. Nee e dscussed ho that
understander relates to the lwtedge base which solves or answers queridss
chapter deals with a general description of OSCON and the understsveleiso
describe the plan understander calddnCon which is a program that computes
the rules of consequence and the rule of compositienTeansfer Semantics action

frames.

7.1. Design principles

We havetaken the approach of building an operating system consultant which
operates in real-time and which embodies a natural language understasnders
shavn in Chapter 2, that happens to be a good approaahlthnly ary consultant

system.

We have already shown that gngood consultant system must provide a
friendly interface to the usefhe interbce should not require the user toéany
special computer skills, otherwise we defeat the purpose of the syAtemtural
language understander will be the best at functioning as a friendly interface as that is
the language of the useQueries can be posed in English ang absequent dia-

logue would be in English including the system responses.

We ae primarily interested in modeling the UNIX operating system although
other operating systems are of intereshe design of OSCON is intended to be

general enough to g kelp on mag operating systems. That design has been

107

108

motivated by lessons learned in building earlier operating consultants. These sys-
tems, called UCC and Yucca, were discussed in Chaptee2aVéincluded tvo

major design principles in the design of the OSCON system: (1) the principle of

understanding and solving; (2) the principle of a general approach to operating sys-

tem consultation.

7.1.1. The principle of separating understanding and solving

There are tw main functions that gnconsultant system must address. Those
are the functions oftinderstandingand answeringuser queries. The problem of
understanding a query is different to the problem of solving or answering one.
Queries like, ‘How do | delete a file?’make perfect sense to gncomputer user
who may hge ro particular knowledge of operating systems. Deleting files is one of
the most common functions thatyanomputer user may need to performihe
knowledge that them command is used to perform this task is not necessary to
understand it. Hoever, general knowledge about files and the act of deleting them

is necessary for solving.

One of the principle design features of our system is that the process of under
standing a query is separate from that of solving a quWégyall this, theprinciple
of separation of understanding and solviagd it has been reported in diheer
(1987). Problems related to understanding include the control of ambiBaity
example, in the query‘How do | print a file with pageheaders?he file may
already hae pageheaders and that is different from the file getting pageheaders
when it is printed. The understanding phase of the systestv@s determining that

ambiguity exists and then resolving that ambiguity.

109

7.1.2. A general consultant

We intend that the system will @ an general flaor. By this we mean if some
user asks a query in the context of one operating system, OSCON vwdlltea
capability of answering the query in terms of anotHer example, a user may be
asking queries about UNIX and suddenly,s&yow do | use ‘dir’ to find the cre-
ation date of all the files in my directory® oweve, there is nodir command in
UNIX although there is one in TOPS-20. Of course, thevelguit command for
UNIX is Is -I. It is hoped that OSCON will answer user queries onyraoerating
systems, although we are focusing on UNIX. Other computer operating systems of

interest are VMS, VM/CMS, and DOS.

7.1.3. Representing principles as architecture

OSCON has a termodule architecture. One module, called the natural lan-
guage understandehas the function of understanding and answering English
gueries. Thesecond module, or knowledge base, is detailed and formal. It func-
tions as the solving or answering module. The knowledge base is being constructed
at the Unversity of Vermont by DrSteve Hegner. Work on the knowledge base is
discussedxensvely in Douglass & Hgner (1982), Hegner & Douglass (1984) and
Hegner (1987). Our architecture is similar to that found in ynaatural language
interfaces to database systems (see Waltz, 1975, 1978; Hendrix et al., 1978; Martin
et al., 1983; Wallace, 1985)n these systems the formal knowledge base and query
language alreadyxest, and the task is to add a natural language front end. In the
operating system consultant, we are designing both modules to be efficient and tai-
lored specifically for the domain of consulting on systeifise two-module archi-
tecture is one of the principle design features of OSCON. As pointed outgmgiHe

(see Hegner 1987, p. 1) the two-module architecture facilitates the important

110

principle of separation of understanding and solviipe two modules are con-
nected by a formal query language called OSquel. A good description of OSquel is

given in Hegner & Douglass (1984).

We havealready shown that grsystem which communicates information on
some domain must possess good knowledge about that domaag.daskgn princi-
ple of our system is the construction of a detailed formal, knowledge base and
retrieval facility. The knowledge base responds to comed detailed technical

gueries concerning both static and dynamic information.

7.2. An oserview of the consultant

There are tw ways in which a help utility may be incorporated into a system.
The utility may be designed as an gr&a component of the system. This approach
may be applied to an existing system by rewriting components which are already
supplied by the help utilityThe Cousin interface by Hayes (1983) reflects this strat-
egy. We hope to install the operating system consultant om systems with ery
little effort and that it be visible only to those who wish to use it. The system is con-
ceived entirely as an eternal utility which may be installed just élka rew elitor or

compiler We wish to ensure maximum portability and usability of the system.

The user intedce is not intended to be elaborate by amans. Man users
use standard video terminals and OSCON is designed with the intenviolimyca
reasonable interface to the UNIX system via such terminals. In partitidazom-
municator will be inoked by typing an appropriate command name to the proces-

sor, and then the query itself can be typed into the system as natural language text.

The system will be transportable to a widaigty of UNIX and UNIX-like

systems. Common Lisp has been promoted as a standard for lisp programmers.

111

Common Lisp will soon becomevailable on a large number of UNIX systems.
Therefore, we are implementing OSCON in Common Lisp. As the knowledge base
research program is not a part of this thesis, we will not discuss it hevevédoa

detailed description may be found in Hegner (1987).

The flov of control in OSCON is as folles: Initially, the users ratural lan-
guage query is translated into a formal query in OSquel. This step resojves an
ambiguity in the natural language queWhen this step is completed, the request
for information about the domain is sent to the knowledge base. The next sep solv
the formal query and natural language issues are vaved at this stage. The final
stage inolves translating the instantiated formal query into a natural language form

suitable for presentation to the user.

7.3. An oserview of the understander

The natural language understander parses English sentences into a formal
guery language called OSqudtormal queries are represented in the form <P A Q
U>. P and Q represent preconditions and postconditions yoaction A. U repre-

sents the particular person or user performing A.

The understander can be considered in terms @fiistinct phases: (1) formal
guery generation, and (2) answer production. The formal query generation phase
involves four components. Each component producesvdawe of meaning repre-
sentation for some queryrhe need for having variousvids of meaning representa-
tion in ary interface is discussed by Sparck-Jones (1983). She tells us that in order
to presere text structure, and in order to dxtensve inference, representations at
different levels are required. She describes one current project of building a natural
language front end to a database wherferdiiit meaning representations must be

utilized.

112

The control flev of the understander proceedslikis: (1) Initially, an English
guery is input by the useiThe query is parsed intoshallow epresentatiorby a
natural language parseffhe termshallow epresentationis used to describe the
output from different parsing techniques. This representation may include some
semantics such as knowledge of word senEgamples of natural language parsers
we currently use are described by Ball and Huang iiks/f1986) and by Slator in
Wilks et al. (1987); (2) Each shalNaepresentation is passed to an embedded action
representation (EREP) generaffinis component builds semantic representations of
gueries from the shallo representation and makes use of semantic case frames
existing in a database. Case labels are attachearitmug items; (3) Each embedded
action representation is passed to a Transfer Semantics component which maintains
a dcatabase of knowledge frames. The Transfer Semantics component is the heart of
the understandeit contains the abstract knowledge about operating systems and
embodies the tasks of frame selection and instantiation; (4) A domain-specific
Transfer Semantics representation is passed to a formal query generator which pro-
duces an uninstantiated formal query to the database in a language called OSquel.
Formal queries are instantiated by the application of a solving process in thie kno
edge base. The answer generation phase of the understander is concerned with pro-

ducing natural language answers from instantiated queries.

7.4. The PlanCon program

The function of PlanCon is to compute inference rukss dransfer Seman-
tics. Transfer Semanticsag described in Chapter 3 and the rules were described in
Chapters 4 and 5Transfer Semantics on its own is not powerful enough for under
standing more comptegueries and that is whPlanCon is usedPresentlythe first

and second rules of consequence and the general rule of compd2@ay) have

113

been implementedWe haveimplemented the rules of consequeneer the PRINT

frame, and the rule of composition for the LIST and PRINT frames.

All frames are to be loaded into the system before camputation bgins.
Therefore, object and action frames are input by the programiveeghow the pre-

condition set for the PRINT frame in Figure 7.1.

(preconditions
(mandatory (not (o-frame directory-file)))

(optional (((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)))))

(((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame print-queue))

(((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)))))))

Figure 7.1 Precondition set for PRINT.

The first condition in the precondition set is mandatdhe next three condi-
tions are optional. The final optional condition is aadétf Interpretinghe abeoe
set, it is noted that the mandatory condition specifies that a directory file should not
be printed.Now, let us not confuse the reader at this point. Of course, it is possible
to print a directory by first listing it and then printing itety one does not print

directories themselves, and this is what we are concerned with here. The first

114

optional condition specifies a preference that files are printed and their contents are
preferably visible byte sequences. The second optional condition declares in addi-
tion the existence of a printer quede. order to print a file on the printer it is eer
tainly useful to hee a pinter queue.Finally, the third precondition in the set is a
default, and is the same as the first optional condite. co not worry about pre-
conditions such as the system being up, the terminal workingybo&rd on-line.

These are simply assumed. The postcondition set for PRINT is shown in Figure 7.2.

(postconditions

(optional (((o-frame non-directory-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)
(has (o-frame filter)))))
(o-frame device-file))

(((o-frame non-directory-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)
(has (o-frame filter))))))

(((o-frame non-directory-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame device-file))))

Figure 7.2 Postcondition set for PRINT.

There are three optional conditions, the final one delimiting a default. The first con-
dition declares that the file which wews@n the precondition set also exists in the
postcondition set. The file doesdisappear after printing as would be the case with

a celete frame. The file still contains visible-byte-sequences although a filtaxis no

115

also applied. Filters are items such as pageheaders, line numbers anddates.

device file exists to denote default standard output which is the terminal screen.

The second optional condition tells us that a print qu&istseand has a print
gueue entry Also, a filter may be applied to the contents of the filee third post-

condition in the set is again a default and specifies output to a device file.

For each frame there must be some commands thabeante the actionThe

commands for printing are shown in Figure 7.3.

(actions
(optional (o-frame cat)
(o-frame nore)
(o-frame Ipr)
(o-frame pr)
(o-frame print)
(o-frame option-list)))

Figure 7.3 Action set for PRINT.

Printing can be completed withyanf the commands in the optional set of actions
and their respeate gtions. Finally in Figure 7.4 we specify the actor performing
the action or transferAny user can print a file and this is represented in the actor

set.

In the preceding examples we reako daim that the action frame components
are in ay way complete or sufficient in order to describe the action of printing.
Indeed we expect to extend the precondition and postcondition sets to handle more

comple queries.

116

(actor
(optional (o-frame user)))

Figure 7.4 Actor for PRINT.

7.4.1. Computing the first rule of consequence

Say the user asksHow do | print a file on the screen?’A problem with this
query is that the frame matcher cannot mdilehin the query tanon-directory-file
in the postcondition set for the PRINT action frame. The postconditions in the frame
are too specific. All PlanCon needs to do is to run the first rule of conseqwence o

the postconditions for the print frame.

After applying the first rule of consequence we get Figure 7.5, whickissho
files rather than non-directory-files. The frame matcher will match file from the
guery to file in the postcondition setwmolhe problem of strong postconditions is

solved.

7.4.2. Computing the second rule of consequence

Say the user has entered the quékyow do | print a plain file?” A ssume that
the print frame has been selected from a number of frames as the candidate that we
should use. The problem here is that plain file is not mentioned in the precondition
set. The frame matcher would notdikhe print frame at all. Heever by goplying

the first rule of consequence to Figure 7.1 we canel@gure 7.6.

117

(postconditions

(optional (((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)
(has (o-frame filter)))))
(o-frame file))

(((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)
(has (o-frame filter))))))

(((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame file))))

Figure 7.5 Weakening the postconditions for PRINT.

In Figure 7.6 we shw the strengthened preconditions for printing.wNithe
frame matcher has no problem in matchirtpiv do | print a plain file?’to the first

optional in the set.

7.4.3. Computing the rule of composition

The rule of composition defined that certain frames could be concatenated
together in sequence. For example, the quéfpw do | list a directory and then
print it?” could be handled by concatenating the LIST and PRINT frariés.
preconditions for LIST are the complete preconditions for the sequence. In Figure

7.7 we shw the optional preconditions from the set for L)®articular to the abee

query.

118

(preconditions
(mandatory (not (o-frame directory-file)))

(optional (((o-frame plain-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)))))

(((o-frame plain-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame print-queue))

(((o-frame plain-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)))))))

Figure 7.6 Strengthening the preconditions for PRINT.

(preconditions

(optional (((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences)))))))

Figure 7.7 Selected preconditions for LIST.

The correct optional postcondition for LIST is shown in Figure 718e

selected postcondition represents the output of listing directories coming out on the

119

screen. The next step is to apply this as a precondition to the PRINT frame. These
preconditions for PRINT produce the postcondition shown in Figure 7.9. The rule of
composition for listing and printing haswdeen completed. Of course, this com-
putation has wolved determining what the PRINT frame shouldenhd given the

precondition set in Figure 7.7.

(postconditions

(optional (((o-frame file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame device-file))))

Figure 7.8 Selected postconditions for LIST.

(postconditions

(optional (((o-frame non-directory-file)
(has (o-frame contents)
(has (o-frame visible-byte-sequences))))
(o-frame device file))))

Figure 7.9 Selected postconditions for PRINT.

Chapter 8: Conclusion

A theory of understanding queries about computer operating systemswhas no
been presented and it is time to summarize what has been done and more important,
what we hae o do. Thereare mag areas of the problem not wered by the thesis,
while other areas ka leen discussed adequatelWe present first thoughts on

ideas for further work and some problems with our existing fnaorie

8.1. Summary

The thesis has described a theoretical model of a natural language understander
for an operating system consultafthe first step in doing this was to describe a
good knowledge representation for operating systems. The next step was to define a
set of inference rules which could operate on that representation ane okavi
information. Itwas shown that without inference rules natural language queries
could not be understood. The construction of inference ruledved defining a
language for describing the rules. The language was wedrdrom Axiomatic
Semantics. From there, the power of a plan understanaiked PlanCon, was
extended by introducing merules of inference. Theseweules extended the rule
of composition in @rious directions, and eered selectie, parallel, and fork com-
position. W\ demonstrated that the general rule of composition had really defined
the inherent properties of composition by showing cases where each of the other

composition rules collapsed into the general one.

Then we changed the direction of discussidnstead of working out the
knowledge representation to meet natural language queries (KNOWLEDGE =>

LANGUAGE) we worked out a representation of language to meewladge

120

121

(LANGUAGE => KNOWLEDGE). We showed hav a theory of meaning represen-
tations for natural language queries could besldped and he that theory weuld
representxamples of natural language queries. The theory of the understaasier w
placed in the coni of a complete description of OSCON and we described ho

PlanCon rercised three of the inference rulesoTransfer Semantics.

8.2. Consultation by artificial communication is useful

In developing the work herein we conclude that a natural language operating
system consultant will be useful to those people who wish to useVéadavenot
only shown wly an atificial consultant would be useful, butyeadso developed a
theory of an understander which could be incorporated within one. The imple-
mented system will taknatural language input and parse it into some meaning rep-
resentation and that can be further translated into a detailed domain specific repre-
sentation. W oonclude that the kwdedge representation and planning components
of ary consultant system are a major part of its final succ€hat is wly we @n-

centrated so heavily upon them in Chapters 4, 5, and 6.

Detailed representations of the input queries can be passed to a knowledge base
where answers to queries can be producezlbteve that if the knowledge repre-
sentation is xensve enough, and the natural language parser circumscribegea lar
part of English query formation, then the consultant would be a good approximation
of what human consultants do. Of course, the program may We &ld a good
indicator of that is thex@ent of the theory in this thesis. And remembes have
only described the understander herewkl@r, we do rot worry about such slo
ness. In the future, computer architecturalettgments and hardware implementa-
tions will increase the speed of computers dramaticéllgo, using a artificial con-

sultant would certainly be better than looking through a large set of manual pages or

122

using a simple é&y~on-command system, owan worse by asking a computer

expert. Computer experts can be the worst consultants of all.

8.3. Towards better consultants

Although we hae devdoped a theory of an understander for queries about
operating systems, there are madeas that hae rot been gplored. Inorder to
build better consultants these areas must alsousstigated. Let$ talk about some

of the things that we kan’t done yet.

One of the major components that our theory lacks is a formulation of answer
generation phase for OSCONWhat happens when the query solver has formu-
lated an answer to a query?”How do we epress that answer in EnglishOf
course, the major aim of the thesiasmot to do this and it is certainly an area of
further investigation. We postulate that Transfer Semantics will be useful in pre-
senting answers to the usdt is suspected that answer generation will not be too
difficult as the query soér produces answers in the form <P A Q U>. The answer
ing process may volve an nveasion of the meaning representation approach in

conjunction with Transfer Semantics.

There was no delopment of a theory of o natural language sentences could
be parsed into syntactico-semantic structuresweder, this is a large area of
research and much work has already been done there. As was already mentioned in

Chapter 7 we would hope to use existing parsers as front ends to do this.

There has been no in-depth discussion of the frame selection mechanism or
how knowledge is selected from meaning representatidis.cescribed briefly that
frames would be selected on a preference basis where the frame with the most satis-

fied over non-satisfied matches is the right oneweeer there are better detailed

123

ways of selecting frames rather than simple preference. This is an area of future

study.

8.4. Detection of user misconceptions

A good consultant system mustveaome way of deciding and reporting that
the user is making mistakes while using the progr&or.example, say a user asks
the query“How do | print a file with the -Z option?”. “-Z” is not an option on print-
ing. Nor, can -Z be inferred for printing. The action frame fwinting does not
specify a formula of the form ({P} A {Q}) because A is not satisfied. The user
could be informed that he is trying to do something impossiile. dso hope to
investigate the possibility of recognizing ill-formed embeddingr Example, the
query “How do | delete my files and then list them?” dogégnake much sense at
all. Filescannot be listed after there deleted. Error checking components could
be added to the system where errors would be detected at early stages and therefore
not passed on to the knowledge base. Thevledge base would find out that the
gueries were incorrect but thabwld happen a lot lateand therefore is less fef
cient. It is emisaged that PlanCon will be able to detect errors from implicit plans

existing in user queries.

8.5. The necessity of understanding context

One major problem which must be tackled is the understanding of user queries
in context. For example, a user may a%fow do | print the file paul on the Ima-
gen? and then saydfter a fav more sentences, “What happened with paul?’
There must be a mechanism for sorting temporal representations of sentences on a
stack and pulling them bfater when the are needed. This is where our theory of

embedded representations comes ie.dd' rot think of cont&tual understanding in

124

terms of single sentencesitbembedded representations of actiongso T more
gueries wuld produce a concatenated representation @foilwrore sentencesOf
course, we could not store representationsyetime someone asks a question.
There would be too marstored and this would violate our minimal storaggdth-
esis. Thereeeds to be some theory ofvhto forget information in the EREPs as

time goes on.

A useful element of gnembedded temporal representation is evidendeoob
(see Carberry1985). For example, if someone is asking a lot of questions about
printing, then may of the action frames on the embedded stack withlire FRINT
frames. That is useful to kmobecause it will aid in understanding and frame selec-
tion. If a user seems to be asking queries about printing, and OSCON recognizes
that, then it will help in understanding subsequent queries. Alsmiframes hae
the same number of satisfied preferences, it would be useful wdkmut focus as

OSCON could then taka ketter shot at selecting the correct frame.

8.6. The representation of belief

One major area of furthervestigation is the representation of belief in the
system. Belief models are useful as an aid for understandigghghuser mags
mistales in a dialogue systenThe emphasis in this area is to consider situations
where belief structures of the user differ radically from the beliefs and plans of
OSCON. This is useful for the modeling of both coopeeasnd adverse situations

where a system mustVea nodel of what its interlocuter does and does notkno

Good discussions of belief models are found iitk¥V& Ballim (1987) and
Ballim (1986). Barnden (1986) describes an alteveatrethod of representing
belief. We intend to include ideas about belief representation from Wilks & Bal-

lim's and Barnders models in OSCON.Ballim (1986) proposes a model for

125

computing the beliefs of others on aadf basis with emphasis on the notion of
self-knavledge. Abelief model will be particularly useful in dgoping representa-

tions of user knwledge and determining whether a user ivaar an epert. The

answer generation mechanism would be able to present answers to the user depend-
ing on whether the user has a detailed knowledge of operating systems orynot. An
belief generator allows a system tovelep a good representation of what the user
believes aout the system. The belief system will be useful in determining when the
user is misinterpreting the system by believing that it is communicating about one

system (sayTOPS-20) while it is really communicating about another, (S&iIX).

One of the major functions of the understander is to decide the intent of the
user The intent of a user is determined after frame selection and instantiation occur
When some frame has been instantiated, there will be a primary unknown within
that frame. For example, with the quetiow do | print a file on the laser printet?’
the action component (A) in the frame for printing will not be instantialddere-
fore, OSCON marks the action component of the frame as being the information
required. Inthe case of a query likéWhat happens if | delete all my filesZhe
precondition is matched, yet the postcondition is not specified and is therefore the
information that the user requires. Belief models will also help to determine the

intent of the user.

The abwoe ideas are currently undervastigation and we hope to report on
them soon. All of these will help ward building better consultant systemé/e
will close with a question raised byiMhsky et d. (1984,p. 590) , “Probably the
most significant problem in UC (Unix Consultantyalves representational issues.
That is, hav can the arious entities, actions and relationships that constitute the UC
domain best be denoted in a formal languagltds hoped that this thesis mek a

start in answering this question and yamore.

References

Algai¢, S. and M.A. Arbib (1978The design of well-structured and correcbpr
grams New York: Springer-Verlag.

Alterman, Richard (1986)\n adaptive plannerIn Proc. Fifth National Conference
on Artificial Intelligence (AAAI-86), Philadelphia,A Vol. 1 (Science), pp.
65-69, August.

Arens, Ygal (1986) CLUSTER: An apmacd to cmontextual languge wnderstand-
ing. Report No. UCB/CSD 86/293, Computer Scienceidion (EECS), Uni-
versity of California, Berkelg California 94720, April.

Ballim, Afzal (1986)The computer gnegrtion of nested points of wie Master's
thesis, Computer Science Department, Dept. 3CU, Box 30004, NN&xico
State Unversity, Las Cruces, Ne Mexico, NM 88003-0001.

Barnden, John (198@&) viewpoint distinction in theapresentation of mpositional
attitudes In Proc. Fifth National Conference on Artificial Intelligence
(AAAI-86), Philadelphia, PA, Vol. 1, pp. 411-415, August.

Bates, Madeleine, M.G. Moser & David Stallard (198®) IRUS tansportable
natural languagye database interface Expert Database Systems, In Proc. First
International Workshop, Larryé¢schbey (Ed.), pp. 617-630, Benjamin/Cum-
mings Publishing Companinc.

Billmers, Meyer A. & Michael G. Garifio (19838uilding knowledge-based o+
ing system consultantdn Proceedings of the Second Conference on Atrtificial
Intelligence Applications, pp. 449-454, Miami Beach, Florida, December.

Bobraw, D.G. & T. Winograd (1977)An overvien of KRL, a knowledg representa-
tion languagge Cognitive Sience, Vol. 1, No. 1, pp. 3-46.

126

127

Bougare, Bran (1979)Automatic Resolution of Linguistic Ambiguitieechnical
Report No. 11, Umwiersity of Cambridge Computer Laboratpi@ambridge,
United Kingdom.

Brachman, R.J. (1979Dn the epistemological status of semantic networks
Associatve Networks: Representation and use of wiexlge by computers, pp.
3-50, N.V Findler (Ed.). Nev York: Academic Press.

Carberry Sandra (1983)Tracking user goals in an information-seekingvieon-
ment In Proc. Second National Conference on Artificial Intelligence
(AAAI-83), pp. 59-63, Uniersity of Maryland and George Washington Uni-
versity, Washington, DC, August.

(1985A pragmatics-based appad to undeistanding intesentential
ellipsis In Proc. 23rd Annual Conference of the Association for Computa-
tional Linguistics, pp. 188-197, Chicago, lllinois, July.

Chafe, W.L. (1970Meaning and structer of language Chicago, lllinois: Unver-
sity of Chicago Press.

Cox, Charles A. (1986 ALANA Augmentable LANgue Aalyzer Report No.
UCB/CSD 86/283, Computer ScienceviBion (EECS), Uniersity of Califor
nia, Berkelg, California 94720, January.

Dearholt, D.W.; R.W Schvaneeldt & F.T. Durso (1985)Properties of networks
derived from poximities Memoranda in Computer and Cogveti Sience,
Memorandum MCCS-85-14, Computing Research Laborafoept. 3CRL,
Box 30001, Ner Mexico State Uniersity, Las Cruces, NM 88003-0001.

Douglass, Robert J. & Stephen JgHer (1982)An expert consultant for the UNIX
opemting system: Bridging the gap between the user and command ¢gngua
semantics In Proc. Fourth National Conference of the Canadian Society for
Computational Studies of Intelligence (CSCSI)/SCIEO Conference, pp.
119-127, Saskatoon, Saskatehe, May.

Fass, D.C. (1986afollative Semantics: a description of the Metadgpam. Mem-
oranda in Computer and Coguéi Sience, Memorandum MCCS-86-23,

128

Computing Research Laboratpiyox 30001, Nes Mexico State Uniersity,
Las Cruces, NM 88003-0001.

(1986bLollative Semantics: an appach to aherence Memoranda in
Computer and Cognite Sience, Memorandum MCCS-86-56, Rio Grande
Research CorridpComputing Research LaboratpBox 30001, Nev Mexico
State Unversity, Las Cruces, NM 88003-0001.

Fass, D.C. & Yrick Wilks (1983) Prefeence semantics, ill-formedness and
metaphor American Journal of Computational Linguistics, Vol. 9, pp.
178-187.

Fikes, R.E. & N.J. Nilsson (197HTRIPS: A ng approad to the application of
theoem poving to pioblem solving Artificial Intelligence, Vol. 2, pp.
189-208.

Fillmore, C.J. (1968Yhe case for caseln Universals in Linguistic Theor)E. Bach
and R. Harms (Eds.), pp. 1-90. W&ork: Holt, Rinehart and Winston.

(1977The case for caseopened In Syntax and Semantics, Peter Cole
and Jerrold M. Sadock (Eds.), pp. 59-81wNéork: Academic Press.

Floyd, R.W (1967) Assigning meanings to gmrams In Mathematical Aspects of
Computer Science, Proc. American Mathematical Sqci®gynposium in
Applied Mathematics, Vol. 19, J. chwartz (Ed.), Providence, Rhode Island,
pp. 19-31.

Gabrielan, A. & M.E. Stickne(1987)Hierarchical representation of causal knowl-
edge Proc. Western Conference on Expert Systems (WESTEX-87), pp. 82-89,
Disneyland Hotel, Anaheim, California, July.

Goldstein, I.P., & R.B. Roberts (197Rudge, a khowledg-based scheduling @
gram In Proc. Fifth International Joint Conference on Artificial Intelligence
(IJCAI-77), pp. 257-263, Cambridge, Mass.

Hayes, Philip J. (1982)niform help facilities for a cooperative user interfack
Proc. National Computer Conference, pp. 469-474, HouseoasT

129

Hayes, Philip J. & Pedro A. Szekely (198Byaceful interaction through the
COUSIN command interfacelnternational Journal of Man-Machine Studies,
Vol. 19, pp. 285-306.

Hegner Stephen J. (1987Repesentation of command langyea kehavior for an
opemating system expert consultation facilitffechnical Report CS/TR87-02,
CS/EE Department, Uvgrsity of Vermont, Burlington, Vermont, USA.

Hegner Stephen J. & Robert J. Douglass (19&&4)owled@ base design for an
opemating system expert consultanin Proc. of the Fifth National Conference
of the Canadian Society for Computational Studies of Intelligence (CSCSI),
pp. 159-161, London, Ontario, December.

Hendrix, G.G., E.D. Sacerdoti, D. Sagvicz & J. Slocum (1978Peveloping a
natural languaye nterface to compledata. ACM Transactions on Database
Systems (TODS), Vol. 3, No. 2, pp. 105-147, June.

Hoare, C. A. R. (1969\n axiomatic basis for computerggramming Communi-
cations of the ACM, Vol. 12, No. 10, pp. 576-583, October.

Hoare, C.A.R. & N. Wirth (1973An axiomatic definition of the pgramming lan-
guage FASCAL Acta Informatica, Vol. 2, pp. 335-355.

Huang, Xiuming (1985Machine translation in the semantic definite clausangr
mars formalism Memoranda in Computer and CogvetiSience, Memoran-
dum MCCS-86-72, Computing Research Laboratbgpt. 3CRL, Box 30001,
New Mexico State Uniersity, Las Cruces, NM 88003-0001.

Kautz, Henry A. & James.RAllen (1986)Genealized plan ecognition In Proc.
Fifth National Conference on Artificial Intelligence (AAAI-86), Philadelphia,
PA, Vol. 1 (Science), pp. 32-37, August.

Kemke, Christal (1986Yhe SINIX Consultant — Requirements, Design, and Imple-
mentation of an intelligent Help System for a UNIX Derivatiniversitat
des Saarlandes, Kl-Labor (SC-Project), Berichtldly October

130

(1987Repesentation of domain knowlesign an ntelligent help sys-
tem In Human-Computer Interaction — INTERA '87, H.J. Bullinger and
B. Shakel (Eds.), pp. 215-220. Amsterdam: Elsevier Science Publications B.V
(North-Holland).

Litman, Diane J. & James Rllen (1984)A plan recaynition model for clarification
subdialogues In Proc. Tenth International Conference on Computational Lin-
guistics, and 22nd Annual meeting of the Association for Computational Lin-
guistics (COLING-84), pp. 302-311, Stanford, California, July.

Martin, Paul, Douglas Appelt & Fernando Pereira (1983@hsportability and gn-
erality in a natual-language nterface systemlIn Proc. Eighth International
Joint Conference on Artificial Intelligence (IJCAI-83), pp. 573-581, Alan
Bundy (Ed.), Karlsruhe, West Gernyaiugust.

Matthevs, Manton & Walter Pharr (198 Knowledg acquisition for active assis-
tance. Preprints of the First International Workshop on Wiexlge representa-
tion in the UNIX help domain, Uwersity of California, Berkley, California,
December.

McDonald, James E., J.D. Stone & L.S. Liebelt (1988pching for items in
menus: The effects of organization and type ajetarin Proceedings of the
27th Annual Meeting of the Humaraé&tors Societypp. 834-837, Norfolk,
Santa Monica, October.

McDonald, James E., Donald.\Mearholt, Kenneth R. Paap & Roger B¢hvan-
evddt (1986)Human factos in computing systemsProc. CHI'86 conference,
Special issue of the SIGCHI Bulletin, pp. 285-290, Marilyn Mantei & Peter
Orbeton (Eds.), Boston, Mass., April.

McDonald, James E. & Roger .V¥chvaneeldt (1987) The application of user
knowled@ to interface design Memoranda in Computer and Cogwti i-
ence, Memorandum MCCS-87-93, Computing Research Labagrddemt.
3CRL, Box 30001, N& Mexco State Uniersity, Las Cruces, NM
88003-0001.

131

Mc Kewtt, Paul (1987)Natural language nterfaces in computer aided instruction
— What happened beferand after the 80s AICAI coupln Proc. Fourth Inter
national Symposium on Modeling and Simulation Methodqlagyversity of
Arizona, Tucson, Arizona, January.

Minsky, Marvin (1975)A framework for representing knowledy In The psychol-
ogy of computer vision, P.H. Winston (Ed.),W¥ork: McGraw-Hill.

Owicki, S. & D. Gries (1976aAn axiomatic proof technique for parallelqgrams
I. Acta Informatica, Vol. 6, pp. 319-340.

(1976b)Veifying properties of paallel programs: an axiomatic
approach Communications of the ACM, Vol. 19, pp. 279-285.

Pagan, Frank G. (1981)Formal specification of mgramming languges: A
panoramic primer Englewood Cliffs, Nev Jersey: Prentice-Hall.

Pelavin, Richard N. & James.RAllen (1987)A model of concurrent actions having
temponl extent In Proc. Sixth National Conference on Atrtificial Intelligence
(AAAI-87), pp. 246-250, Seattle, Washington, Vol. 1, July.

Pereira, Fernando C.N. & D. H. D. Warren (19B@Yinite clause ggmmas for lan-
guage analysis — A suryeof the formalism and a comparison with augmented
transition networks Atrtificial Intelligence, Vol. 13, No. 3, pp. 231-278, May.

Pollack, Martha E. (1986) model of plan inference that distinguishes between the
beliefs of acts and observes. In Proc. of the 24th Annual Meeting of the
Association for Computational Linguistics (ACL) Conference, pp. 207-214,
Columbia Unversity, New York, Newv York, June.

Sandavall, Erik & Ralph Ronnquist (1986A representation of action structes In
Proc. Sixth National Conference on Atrtificial Intelligence (AAAI-87), Seattle,
Washington, Vol. 1, pp. 89-97, July.

Schank, R.C. (1975¢onceptual information pcessing Amsterdam: North-Hol-
land.

132

Schank, R.C. & R.PAbelson (1977)Scripts, plans, goals and und&nding: an
enquiry into human knowledgdructures Hillsdale, Nev Jerseg/: Lawrence
Erlbaum Associates.

Sparck-Jones, Karen (1983hifting meaning apresentations In Proc. Eighth
International Joint Conference on Atrtificial Intelligence (IJCAI-8), Alan Bundy
(Ed.), pp. 573-581, Karlsruhe, West Geryakugust.

Stanat, Donald .R& David F. McAllister (1977)Discrete mathematics in computer
science Englevood Cliffs, New Jersey: Prentice-Hall, Inc.

Tyler, Sherman W& Siegfried Treu (1986Adaptive interface design: a symmetric
model and a knowledge-based implementatidhe third ACM-SIGOIS con-
ference on Office Information Systems, Association of Computing Machinery
SIGOIS Bulletin (formerly SIG@ Bulletin), Vol. 7, Nos. 2-3, pp. 53-60,
Summer-Fall.

Wallace, Mark (1985)Communicating with databases in natural langea Chich-
ester England: Ellis Horwood Limited.

Waltz, David (1975)Natural language acess to a lagje database: an engineering
approach Advance papers for the Fourth International Joint Conference on
Artificial Intelligence (IJCAI-75), pp. 868-872, Thilisi, Gepa, USSR,
September.

Waltz, David (1978)An English languge question answering system for adar
relational database Communications of the ACM, Vol. 21, No. 7, pp.
526-539, July.

Wilensky, Robert (1982)Talking to UNIX in English: An eerviev of an nh-Line
Consultant Report No. UCB/CSD 82/104, Computer Sciencevigion
(EECS), Unversity of California, Berkelg California 94720, September.

(1986)Some problems and proposals for knowkedgpresentation
Report No. UCB/CSD 86/294, Computer Science Division (EECS)etsity
of California, Berkelg, California 94720, May.

133

(1987p0me complexities of goal analysiBreprints of the Third Con-
ference on Theoretical Issues in Natural Language Processing (TINLAP-3),
Computing Research LaboratpBept. 3CRL, Box 30001, Ne Mexico State
University, pp. 97-99, January.

Wilensky, Robert, Ygal Arens & David Chin (19847Jalking to UNIX in English:
An overviev of UC. Communications of the ACM, Vol. 27, No. 6, pp.
574-593, June.

Wilensky, Robert, Jim Mayfield, AnthgnAlbert, David Chin, Charles Cox, Marc
Luria, James Martin and DekaiuN1986) UC — a pogress eport Report
No. UCB/CSD 87/303, Computer Science Division (EECS)yésity of Cal-
ifornia, Berkelg, California 94720, July.

Wilks, Yorick (1975a)An intelligent analyser and undsander of English Com-
munications of the Association of Computing MachinerZi#, Vol. 18, pp.
264-274.

(1975bA preferential, pattern-seekingsemantics for natural languge
inference Atrtificial Intelligence, Vol. 6, No. 1, pp. 53-74.

(1976Processing caseTechnical Report, Department of Artificial Intel-
ligence, Unversity of Edinturgh, Edinlurgh, Scotland. Also in American
Journal of Computational Linguistics, microfiche 56.

(1978apood and bad arguments about semantic primitivésmmuni-
cation and Cognition, Vol 10., No. 3/4, pp. 181-221.

(1978bMaking pefeences mar active Artificial intelligence, él. 11,
pp. 197-223.

(1986kProjects at CRL in Natural Langga Rocessing Memoranda in
Computer and Cognite Sience, Memorandum MCCS-86-58, Computing
Research Laboratgripept. 3CRL, Box 30001, Ne Mexico State Uniersity,
Las Cruces, NM 88003-0001.

134

Wilks, Yorick; Xiuming Huang and Dan Fass (198§)ntax, Semantics and Right
Attachment In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (IJCAI-85), pp. 779-784, Los Angeles, California.

Wilks, Yorick & Afzal Ballim (1987)Multiple Agents and the Heuristic Ascription
of Belief In Proc. of the Tenth International Joint Conference on Atrtificial
Intelligence (IJCAI-87), Vol. 1, pp. 118-124, Milan, Italy.

Wilks, Yorick, Dan Rss, Cheng-Ming Guo, James E. McDonaldnyTPlate &
Brian M. Slator (1987A tractable machine dictionary as asouce for com-
putational semanticsMemoranda in Computer and CogvétiSience, Mem-
orandum MCCS-87-105, Computing Research Laboraioept. 3CRL, Box
30001, N&v Mexico State Uniersity, Las Cruces, NM 88003-0001.

Woods, W.A. (1981 Procedunl semantics as a theory of meaninig Elements of
Discourse Understanding, A. Joshi, B.L. Webber and I. Sag (Eds.). Cambridge,
Mass.: Cambridge Umérsity Press.

Yun, David Y Y. & D. Loeb (1984)The CMS-HELP expert systerm Proc. of the
International Conference on Data Engineering, IEEE Computer Soppety
459-466, Los Angeles, California.

