
ARTIFICIAL COMMUNICATORS:
AN OPERATING SYSTEM CONSULTANT

BY

PA UL MC KEVITT, B.Sc. (Hons.)

A Thesis submitted to the Graduate School

in partial fulfillment of the requirements

for the Degree

Master of Science

Major Subject: Computer Science

New Mexico State University

Las Cruces, New Mexico

May 1988

Copyright © 1988 by Paul Mc Kevitt

‘‘ Artificial Communicators: An Operating System Consultant,’’ a thesis prepared by

Paul Mc Kevitt in partial fulfillment of the requirements for the degree, Master of

Science, has been approved and accepted by the following:

William H. Matchett

Dean of the Graduate School

Yorick Wilks

Chairman of the Examining Committee

Date

Committee in charge:

Dr. Yorick Wilks, Chairman

Dr. John Barnden

Dr. Don Dearholt

Dr. Fred Richman

Dr. Roger Schvaneveldt

ii

Tiomna ́itear an tŕachtas seo do Pheadar, Róise, PeadaŕOg, Tara, Michéal agus a ĺan

daoine inÉirinn agus ináiteanna nach́i ar bhuail mé leo i rith mo shaoil. Is mar

gheall orthu síud a spreagadh ḿe chun an taighde seo a dhéanamh.

This thesis is dedicated to Peter, Rose, Peadar, Tara, Michael and many people in

Ireland and elsewhere that I have met throughout my life. Research and ideas have

been stimulated by those around me from the early years until now.

iii

ACKNOWLEDGEMENTS

This thesis∗ was dev eloped in the exciting surroundings of the Computing Research

Laboratory† (CRL) under the direction of Dr. Yorick Wilks. The work herein has

been presented to the Natural Language and Knowledge Systems Groups at the CRL

and audiences at international conferences. Computer Scientists, Psychologists, Lin-

guists, Philosophers and Mathematicians have made various interesting comments.

They are all to be thanked for suggesting loopholes and further work.

The project was initiated when Yorick Wilks asked me to hook up a natural

language parser and a UNIX‡ knowledge base. Little did he, or I, know that the

project would grow, from just being a quick parser-database interface, into a theory

on how to construct a natural language understander for an operating system consul-

tant. Theproject has developed into a theory which was presented, under invitation,

at theFirst International Workshop on Knowledge Representation in the UNIX Help

Domain, held at the University of California, Berkeley, in December 1987.

I thank Yorick Wilks for being a constant guide in the completion of this the-

ory. He has been an excellent promoter of this work and has always provided the

utmost encouragement.Thanks are also due to Derek Partridge who continually

showed an interest in the research and gav eme an opportunity to publish a paper in

his latest book onArtificial Intelligence and Software Engineering (Vol. 1) from

∗ The research herein is currently under proposal to the Office of Naval Research
(ONR), the Air Force Office of Scientific Research (AFOSR), Rome Air Develop-
ment Center (RADC), AT&T, and U S West Advanced Technologies. They are all to
be thanked for considering this work for funding.

† The Computing Research Laboratory is a Center of Technical Excellence par-
tially funded by the New Mexico State Legislature as part of the Rio Grande
Research Corridor. This work was supported by a special research assistantship
from the Computing Research Laboratory.

‡ UNIX is a trademark of AT&T Bell Laboratories.

iv

Ablex Corporation.

I thank my committee for providing interesting discussion and argument on

my thesis. They suggested possible problems on a closing draft of the thesis. John

Barnden, Roger Schvaneveldt, Fred Richman and Don Dearholt are certainly to be

commended for doing that.

The theory herein has been scrutinized by the Natural Language Group at the

CRL on many occasions. Membersof that group, including Yorick Wilks, Jerry

Ball, Afzal Ballim, Dan Fass, Tony Plate, Cheng-Ming Guo, Xiuming Huang, Brian

Slator and Sylvia Cand. De Ram, have constituted a stimulating environment during

the pursuit of this research. Special thanks are due to David Farwell who guided me

from many pitfalls and mineshafts.Mike Coombs, Roger Hartley, Chris Fields, Dan

Eschner, and Eric Dietrich from the Knowledge Systems Group made interesting

comments when the work was presented to them. I have worked closely with

Stephen Hegner at the University of Vermont and he has provided enlightening sug-

gestions.

I commend New Mexico State University (NMSU) for providing me with the

excellent interdisciplinary research environment of the Science Building encompass-

ing the Departments of Computer Science, Psychology and Mathematics. I also

thank NMSU for recognizing this research through awarding me theYoung Centen-

nial Researcher Awardin this Centennial Year of Celebration.

v

VITA

January 9, 1964 — Born at Monaghan, Co. Monaghan, Republic of Ireland

1985 — B.Sc. (Hons.) in Computer Science, University College Dublin,

The National University of Ireland (NUI), Republic of Ireland

1986-1988 — Research Intern at the Computing Research Laboratory

Publications

Mc Kevitt, Paul (1988) ‘‘A rtificial Communicators: An operating system consul-

tant,’’ Master’s Thesis, Department of Computer Science, Dept. 3CU, Box

30001, New Mexico State University, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul & Wilks, Yorick (1987) ‘‘Inference rules in an operating system

consultant,’’ I n Preprints of the First International Workshop on Knowledge

Representation in the UNIX Help Domain, University of California, Berkeley,

California, December.

________ (1987) ‘‘Transfer Semantics in an Operating System Consultant: The for-

malization of actions involving object transfer,’’ Proceedings of The Tenth

International Joint Conference on Artificial Intelligence (IJCAI-87), Vol. 1,

569-575, Milano, Italy, August.

vi

Mc Kevitt, Paul (1987) ‘‘Natural language interfaces in computer aided instruction

— What happened before and after the 80s AICAI coup,’’ Proc. 4th Interna-

tional Symposium on Modeling and Simulation Methodology, University of

Arizona, Tucson, Arizona, January.

________ (1986) ‘‘Formalization in an English interface to a UNIX database,’’

Memoranda in Computer and Cognitive Science, MCCS-86-73, Computing

Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State University,

Las Cruces, NM 88003-0001.

________ (1986) ‘‘Building embedded representations of queries about UNIX,’’

Memoranda in Computer and Cognitive Science, MCCS-86-72, Computing

Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State University,

Las Cruces, NM 88003-0001.

________ (1986) ‘‘Selecting and instantiating formal concept frames,’’ Memoranda

in Computer and Cognitive Science, MCCS-86-71, Computing Research Lab-

oratory, Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces,

NM 88003-0001.

________ (1986) ‘‘Object and action frames for Transfer Semantics,’’ Memoranda

in Computer and Cognitive Science, MCCS-86-69, Computing Research Lab-

oratory, Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces,

NM 88003-0001.

vii

Presentations

• Colloquia of Natural Language Work at the Computing Research Laboratory,

October, 1987.

• Knowledge Systems Group Seminar at the Computing Research Laboratory,

September, 1987.

• The Second Western Expert Systems Conference (WESTEX-87), Anaheim,

California, July, 1987.

• Meeting with Dr. Steve Hegner at the University of Vermont, November,
1986.

• AT&T on their visit to New Mexico State University, October, 1986.

• Natural Language Group Seminars at the Computing Research Laboratory,

1986 and 1987.

Fields of Study

Major Field:

Computer Science, Operating Systems, Artificial Intelligence, Cognitive Sci-

ence, Planning, Inference, Knowledge Representation, Natural Language Pro-

cessing, Beliefs.

viii

Abstract

Artificial Communicators:
An Operating System Consultant

by

Paul Mc Kevitt, B.Sc. (Hons.)

Master of Science in Computer Science

New Mexico state University

Las Cruces, New Mexico, 1988

Dr. Yorick Wilks, Chairman

ABSTRACT

Operating systems are computer programs which allow people to accomplish

various tasks on computer hardware. Many people find it difficult to learn how to

use computer operating systems. In the past, help has been available from manuals

or computer experts. However, manuals are very tedious to search through, and

computer experts are scarce. It is possible to build computer programs which com-

municate with people on various domains.We dev elop a theoretical design for a

computer consultant which communicates with people in English. The consultant

will answer English questions on operating systems. The operating system consul-

tant embodies in its design theories of knowledge representation, inference, plan-

ning and natural language processing.

ix

Table of Contents

List of Figures . xv

CHAPTER 1: Introduction 1

1.1. Learningoperating systems. 1

1.2. Theessence of artificial consultants. 2

1.3. Objectives of the thesis 5

1.4. Organization of the thesis 6

CHAPTER 2: Designing consultant systems 8

2.1. Evaluation by criteria. 8

2.2. Types of operating system consultant. 9

2.3. Simplekeyword systems. 10

2.4. Menu-basedsystems 10

2.4.1. McDonald& Schvaneveldt 12

2.4.2. Hayes& Szekely 13

2.4.3. Tyler & Treu 13

2.4.4. Billmers& Garifo 14

2.5. Limitednatural language systems. 15

2.5.1. Yun & Loeb 15

2.6. Naturallanguage consultant systems. 15

x

2.6.1. Hegner & Douglass 16

2.6.2. Wilensky et al. 17

2.6.3. Kemke . 17

CHAPTER 3: A knowledge representation 19

3.1. The elements of a representation 19

3.2. A representation for objects 20

3.3. A hierarchy of objects 21

3.4. The representation of commands 23

3.5. The necessity of preference 26

3.6. A dilemma in ‘‘weak’’ versus ‘‘strong’’ 27

3.6.1. Preconditions 27

3.6.2. Postconditions 28

3.7. The representation of conditions 29

3.8. Linking preconditions to postconditions 30

3.9. Actions and actors 32

3.10. The correspondence between queries and knowledge 32

3.10.1. Concept description queries and knowledge 32

3.10.2. Dynamic queries and knowledge 34

3.11. Alternative representations of knowledge 34

3.12. The limits of knowledge 37

xi

CHAPTER 4: Some rules of inference 40

4.1. Aneed for inference rules 40

4.2. A language for inference rules. 42

4.3. A language for representing actions. 45

4.4. Thefirst rule of consequence 47

4.5. Thesecond rule of consequence. 48

4.6. Inferencedirection and the meaning of implication. 50

4.7. Atheory and representation of query embedding. 51

4.8. Arule of composition. 52

4.9. TheAND rule 54

4.10. TheOR rule 56

4.11. Thedistinction of AND and OR 57

4.12. TheNo-consequence rule. 58

4.13. Ajustification of the minimal-storage principle. 59

4.14. Otherwork on representing inference. 60

4.15. Inference,parallelism, and beliefs 66

CHAPTER 5: Planning in parallel 69

5.1. Arecap on the rule of composition 69

5.2. Pipingas composition. 72

5.3. Redirectionas composition. 74

5.4. Limitationsof the rule of composition 76

xii

5.5. A selective rule of composition 76

5.6. A composition rule for parallelism 77

5.7. A composition rule for forking 79

5.8. A composition hierarchy 79

5.9. Other work on plan hierarchies and parallel planning 83

CHAPTER 6: Meaning representations 85

6.1. The nature of queries about operating systems 85

6.2. A tutorial on the theory of embedding 86

6.3. The components of a meaning representation 87

6.4. Embedded action representations 89

6.5. Null embedded queries ({Ai}{i=0,1}) 90

6.6. Positively embedded queries ({Ai}{i≥2}) 91

6.6.1. Explicit embedding 92

6.6.2. Implicit embedding 93

6.6.3. Shadowed embedding 94

6.6.4. The intricacy of redundant embedding 95

6.6.5. Negated embedding 97

6.7. The selection of knowledge 97

6.8. Meaning representation and surface structure 99

6.9. Other work on meaning representations 100

6.10. Embedded representations are useful 105

xiii

CHAPTER 7: The OSCON system 107

7.1. Designprinciples 107

7.1.1. Theprinciple of separating understanding and solving. 108

7.1.2. Ageneral consultant 109

7.1.3. Representingprinciples as architecture 109

7.2. Anoverview of the consultant 110

7.3. Anoverview of the understander 111

7.4. ThePlanCon program. 112

7.4.1. Computingthe first rule of consequence. 116

7.4.2. Computingthe second rule of consequence. 116

7.4.3. Computingthe rule of composition. 117

CHAPTER 8: Conclusion 120

8.1. Summary. 120

8.2. Consultationby artificial communication is useful. 121

8.3. Tow ards better consultants. 122

8.4. Detectionof user misconceptions. 123

8.5. Thenecessity of understanding context 123

8.6. Therepresentation of belief. 124

References . 126

xiv

List of Figures

Figure 1.1. English queries on operating systems. 5

Figure 3.1. Object frame for protection type. 22

Figure 3.2. Object frame for user designator. 22

Figure 3.3. Instances of user designator. 23

Figure 3.4. Hierarchy of file objects. 24

Figure 3.5. Relations from object hierarchy for file 25

Figure 3.6. Hierarchy of objects to define parts of a file 26

Figure 3.7. Snapshot from object hierarchy for protection type 33

Figure 3.8. Similarities between different operating systems. 33

Figure 4.1. Definition of the first principle of deduction. 44

Figure 4.2. Definition of the second principle of deduction. 45

Figure 4.3.A language for representing actions. 45

Figure 4.4.A command environment for the COPY command. 46

Figure 4.5. Definition of the first rule of consequence. 47

Figure 4.6. Application of the first rule of consequence. 48

Figure 4.7. Definition of the second rule of consequence. 49

Figure 4.8. Application of the second rule of consequence. 49

Figure 4.9. Definition of the rule of composition. 53

xv

Figure 4.10. Application of the rule of composition. 53

Figure 4.11. Definition of the AND rule. 55

Figure 4.12. Application of the the AND rule. 55

Figure 4.13. Definition of the OR rule 56

Figure 4.14. Application of the OR rule. 57

Figure 4.15. Definition of the no-consequence rule. 58

Figure 5.1.A recap on the definition of composition. 70

Figure 5.2. Applying the definition of composition. 70

Figure 5.3. Applying composition to LISTING and PRINTING. 71

Figure 5.4. Applying composition to PRINT and REMOVE 72

Figure 5.5. Applying composition to WHO and WORD-COUNT 73

Figure 5.6. Computing quadruple composition. 74

Figure 5.7. Applying composition to redirection of input. 75

Figure 5.8. Applying composition to redirection of output. 75

Figure 5.9. Applying composition to FIND-PROCESS and KILL. 77

Figure 5.10. Definition of the selective rule of composition. 77

Figure 5.11. Definition of the parallel rule of composition. 78

Figure 5.12. Definition of the fork rule of composition. 79

Figure 5.13.A graphic hierarchy of composition 80

Figure 5.14. Equivalence of parallel and fork composition. 81

Figure 5.15. Equivalence of parallel and general composition. 82

xvi

Figure 5.16. Equivalence of selective and general composition 82

Figure 6.1. Case structure for observing objects 88

Figure 6.2. Instantiated case structure for ‘‘be’’ 90

Figure 6.3. Instantiated case structure for ‘‘delete-obj’’ 91

Figure 6.4. Meaning representation exhibiting explicit embedding 92

Figure 6.5. Implicit embedding I 93

Figure 6.6. Implicit embedding II 94

Figure 6.7. Shadowed embedding 95

Figure 6.8. Redundant embedding I 96

Figure 6.9. Redundant embedding II 97

Figure 6.10. Negated embedding 98

Figure 7.1. Precondition set for PRINT 113

Figure 7.2. Postcondition set for PRINT 114

Figure 7.3. Action set for PRINT 115

Figure 7.4. Actor for PRINT 116

Figure 7.5. Weakening the postconditions for PRINT 117

Figure 7.6. Strengthening the preconditions for PRINT 118

Figure 7.7. Selected preconditions for LIST 118

Figure 7.8. Selected postconditions for LIST 119

Figure 7.9. Selected postconditions for PRINT 119

xvii

Chapter 1: Introduction

Artificial Intelligence (AI) is a field concerned with creating computer pro-

grams that exhibit intelligent behavior. One way in which a program may demon-

strate intelligence is to act as a consultant on some topic.Such consultant programs

can communicate with people through the medium of speech or natural language.

To be useful any such program should approximate a real consultant as best as pos-

sible. Effective communication between the program and people will depend on

how good that approximation is.

1.1. Learning operating systems

In everyday life computer users have to use new systems, or utilities on exist-

ing systems to accomplish various tasks.Many people find it hard to learn how to

use operating systems. People at various levels of computer education may have a

good idea of how to accomplish a task, but not the necessary specific knowledge

needed to complete the task. It is often necessary for the user to obtain further infor-

mation about the system or utility.

Information can be provided by manuals, on-line help, or computer experts.

Experts on computer systems are in short supply and cannot always be available to

help others with various problems. Often experts are not available at the time they

are needed (see Mc Kevitt, 1987, p. 2). Documentation can be made available but

such documentation is usually very large and cumbersome. Finding relevant infor-

mation in a short period of time is quite difficult. Manualsare not always useful as

they can supply numerous pages on anything related to a single command.Manuals

will not always supply, in a single page, the answers on how to execute multiple

1

2

processes, which involve the union of complex constraints. Oftenpeople do not

know the command they are looking for, and therefore cannot index relevant infor-

mation in the manual. If someone doesn’t know how to use the system he may take

up valuable time of other users by asking questions about how to do something.

There is a definite need for computer programs which can communicate with a user

and answer questions about the use of operating systems.

Computers can provide help by on-line documentation where relevant informa-

tion can be located by simple key-matching routines. This is an upgrade of help

provided by documentation manuals. However, there is another approach. What if a

computer program could provide answers to queries and act like a real consultant?

The computer program would be less expensive than an expert, and would be read-

ily available. We call such a program anartificial communicator.

1.2. The essence of artificial consultants

We hav enow decided that computer programs are a useful tool in communicat-

ing information to the user. The next question we must ask ourselves is, ‘‘What

kind of program makes a good consultant?’’. We could build a program which

accepted single words like deleteand gav eanswers like, ‘‘To delete files or directo-

ries you do the following..’’ . That would be a simple keyword interface. Onthe

other hand, the program could present a menu on the screen with the user choosing

various options and indexing information about the required command. Such con-

sultants are called menu-based interfaces.

However, there are some problems with menu-based interfaces. Peoplecan

take a long time to work through the menu interface to find exactly what they are

looking for. Even more problematic is the stark fact of nature that people always

know what they want to do in some system, but can only express that in English or

3

some other natural language.

We could build a program which accepts English queries and replies to these in

English. Itmay take a while to build a program which accepts variations of natural

language input but that would be a good solution.We call such consultant programs

natural language understanders. This thesis is about the theoretical design of a natu-

ral language understander for an artificial communicator. The communicator is an

operating system consultant.

Say we decide that the program will have an interface which accepts input in

the form of English queries, ‘‘What else does the consultant need?’’ The program

needs to know something about the subject on which it is meant to consult. The sub-

ject is operating systems. Therefore, all that needs to be done is to type in the very

manuals that people have traditionally searched through.Yet, it isn’t as easy as that,

because there must be some theory of how the manual should be represented in the

system. In other words, ‘‘What is the best way to represent knowledge about operat-

ing systems in a consultant?’’, must be answered. Also we must find out the best

way to select particular knowledge relevant to a particular question, and even more

important is the problem of understanding natural language input.

If we build a program with an English interface which understands queries, by

selecting the necessary knowledge to do that, then the problem of answering each

query must be faced. To cut costs the knowledge that was used for understanding a

query could be used to answer it. Yet, that isn’t the way to do it, because the prob-

lem of understanding a query is not the the same as that of answering. The answer-

ing process needs to know more detail than the understanding process. The answer-

ing process needs to know the constraints on some process to be executed by a user,

and more important, which commands and options will perform that process. This

has been pointed out by Hegner (1987, p. 1).

4

Any program with a natural language interface, a knowledge representation for

understanding queries, and a knowledge representation for answering them should

act as a good consultant.A module which answers queries in English would be

added. Thenwe are done.

If we can build a program which accepts English queries, understands the

queries, and answers them in English, then the program can act as a good consul-

tant. Of course, many details of each component would have to be worked out, and

good theories of design for each module would be beneficial.We can’t go wrong if

the program embodies a good theory of communication.To polish the communica-

tor off, other modules would be added to track the context of conversation with the

user, and to represent user beliefs about operating systems.A planning module

would be added to understand plans appearing implicitly in queries, and to check if

such plans were viable.

We hav eseen some of the problems that need to be investigated in order to

build an operating system consultant which will act as an effective communicator.

The consultant approach brings forward many of the major problems in AI research.

AI research topics that come to mind are natural language understanding, knowl-

edge representation, inferencing, planning, belief representation, natural language

generation, user modeling, misconception detection and many more. Although we

will touch on many of these topics in this thesis we do not intend any deep discus-

sion on AI approaches to each. That would take up a lot of time. However we will

take an approach on various problems, justify the approach, and compare that

approach to other ones in the field.

5

1.3. Objectives of the thesis

The major theme of this thesis is to build a theoretical design of a natural lan-

guage understander for an operating system consultant.A good feel for the prob-

lems involved in doing this is supplied by observing the types of queries people ask.

A theory on query understanding will need to cover many types of query. Shown in

Figure 1.1 is a list of some common user queries

‘‘ How do I print a file on the Imagen?’’

‘‘ How do I print a file with pageheaders and line numbers?’’

‘‘ What is a directory?’’

‘‘ What is a file?’’

‘‘ What is read protection?’’

‘‘ How do I print a device file which has pageheaders?’’

‘‘ What is the permanent storage limit?’’

‘‘ What is the option on the cat command which numbers lines?’’

‘‘ How do I print a listing of my directory on the laser printer?’’

Figure 1.1. English queries on operating systems.

which the theory described in this thesis will cover. We intend to justify the theory

by showing how it is used to understand various queries.

Most existing consultant systems for operating systems do not include natural

language understanders. The few that do embody natural language understanders do

not encapsulate strong formal models of operating systems.The originality of this

6

work lies in the fact that we have dev eloped a formal model and applied that model

in a natural language understander. We hav eseparated out the knowledge needed

for understanding natural language queries from the knowledge needed to answer

them. A knowledge representation, planning mechanism, and theory of meaning

representations has been developed. We hav enot implemented much of the theory

although there is an implementation of a plan understanding component calledPlan-

Con.

1.4. Organization of the thesis

The organization of the thesis is as follows:

• Chapter 2 contains a discussion on the problems involved in building operating

system consultants and how others have tackled them.We characterize differ-

ent approaches showing the advantages and disadvantages of each.

• Chapter 3 proposes a theory of how knowledge about operating systems may

be represented in a computer program.The knowledge representation is called

Tr ansfer Semantics.

• Chapter 4 introduces a formal language for describing commands or actions

and various manipulations of knowledge structures. The language is used to

describe different inference rules which extend Transfer Semantics so that

more complex queries may be handled. Six inference rules are introduced.

This chapter shows how a rule called the Rule of Composition can act as a plan

generator.

7

• Chapter 5 describes how the Rule of Composition may be extended to allow

specific types of composition. Some new rules are created to compute selec-

tive, parallel, and forked composition.There is a need to represent parallel

actions, as many operating systems such as UNIX allow parallel executions of

commands. Moreover, people can ask natural language queries about such par-

allel executions.

• Chapter 6 shows how natural language input may be understood by parsing

queries into meaning representations. A theory of embedded action representa-

tions is introduced and examples of meaning representations for various

queries are described.

• Chapter 7 contains a discussion on the methodology and architecture of the

artificial communicator called OSCON (Operating System CONsultant).A

program called PlanCon, which computes rules of inference over knowledge

structures, is described. PlanCon is deployed in understanding complex plans

appearing implicitly in user queries.

• Chapter 8 is a summary of work reported in this thesis.We discuss the value

of this work, through a critical analysis.As always, future directions of

research are predicted.

Chapter 2: Designing consultant systems

This thesis will describe a design for an operating system consultant that will

accept English queries and answer the queries in English. There are different

approaches to building operating system consultants and we will describe each in

turn with their advantages and disadvantages. Someof the approaches will be very

close to our own, while others could not be further away. Some systems will have

been designed for specific operating systems while others may be general.

2.1. Evaluation by criteria

In evaluating any consultant system we should define some criteria that will be

useful. We define four criteria for evaluating consultant systems: (1) friendliness of

the interface, (2) detailed answer production, (3) system architecture, and (4) refer-

ence to other systems.

By friendliness we mean how usable the system is.Simple on-line help sys-

tems like the UNIX man program will work only if the user knows command names

or some keywords for what he wants to do.However, to obtain help on various con-

cepts the user must know the command, or related keywords, and that isn’t friendly

at all. Any good consultant system should answer queries by concepts, not only

keywords.

Simple help systems will not answer complex queries. Certainprocesses, such

as printing screen output on the printer, require the concatenation of several com-

mands with multiple options. A simple help system like UNIX man package would

force the user to retrieve information on several commands, sift elements from each,

and work out the correct format for the complete process.Consultant systems

8

9

should fuse information together for detailed processes and they should supply

detailed answers.

Further learning of any system by the user is accelerated if he formulates a

good model of the system in his mind. Such system models are called Cognitive

models by psychologists. Cognitive models are necessary if a user is to properly

understand how to use the system and for the formulation of further intelligent

queries. A user who has not used UNIX before may come across the concept ofpipe

and need to know what it means. Someone may like to know the whole structure of

the UNIX file system. Many help systems do not provide information about such

system architecture.

Any consultant system must includereference to other systems. New users

may have a perfect background in the use of certain computer operating systems and

may ask queries in terms of these. If related terminology is not built into the consul-

tant, it will fail. In fact, a user may understand operating system concepts very well

but not know that he is using the wrong terminology.

2.2. Types of operating system consultant

Many researchers are working on building operating system consultants.There

are four basic types of system available: (1) simple keyword based systems (SIM-

PLE), (2) systems with menu-based interfaces (MENU), (3) systems with limited

natural language capability (LNL), and (4) systems with natural language interfaces

(NL). Although we will discuss the characteristics and examples of each type of

system, we are not going to describe all of today’s systems. Thereare many of

them.

10

2.3. Simple keyword systems

Examples of SIMPLE systems include the UNIXman and apropos facilities.

The problem with these facilities is that they are very unfriendly; the user must

know the name of a keyword before he can find out some information about one.

Also, these systems do not provide detailed information when a user tries to find out

about linking a number of commands together. The user does all the work himself.

SIMPLE systems do not usually include information about other systems.There-

fore, SIMPLE systems do not perform well under the four criteria of evaluation.

2.4. Menu-based systems

MENU systems are based on menu-selection where the user is presented with a

menu displaying a number of options.The problem with most menu-selection

approaches to operating system consultation (pointed out by Wilensky et al. 1984, p.

576; Hegner 1987, p. 1; and McDonald & Schvaneveldt 1987, p. 14) is that they are

not very useful if a user knows what he wants to do, but does not know the explicit

command for doing it. Such menu systems usually key on the names of commands.

Therefore they behave badly in terms of friendliness.To find help about some con-

cept a person must know the name of the appropriate command or a related term to

do so. However, it is usually the name of the command that the user requires in the

first place.

McDonald et al. (1983) have org anized studies to clarify the effects of menu

organization on user performance.They used explicit targets (e.g., ‘‘lemon’’) and

single-line definitions (e.g., ‘‘a small, oblong, pale-yellow citrus fruit’’) to examine

the effects thattype of target has on menu-selection performance. They point out

that real-world users seldom search for explicit targets in menus. If people know

exactly what they are looking for, then they probably know where to find it. Say a

11

user is looking for some command to remove a file. It is unlikely that the name of

the command is known. Searchingthe menu system is easy if the user knows that

the command is delete. But, then the user need not use the menu system at all.

It is possible that one could build a menu system where abstractions or con-

cepts such as printing are represented.However, such abstractions may still not be

useful to some user who can describe what he wants to do, but cannot find any men-

tion of that in the set of abstractions. The problem arises because natural language

expressions are at such an abstract level that they may not fall into any set of con-

cepts. You may argue that such abstractions can also be built into a MENU inter-

face. That is true, but then what you have is a natural language front end.Natural

language front ends are closely related to MENU systems which contain many

abstractions. Suchfront ends allow users to specify queries in terms of abstractions

of word meanings, and are therefore more flexible. It is important to point out that

we are not saying there is anything wrong with menu-selection approaches. They are

a useful insight into how to structure knowledge about some domain and are a useful

first draft at building any interface.

MENU systems behave badly with complex queries involving a large number

of constraints. For example, say a user wants to delete a listing of a file on the

printer queue. The menu system will not present such complex information, and the

user must piece together knowledge about the many commands involved in this pro-

cess.

Any user needs to have a good education on the structure of a system. There

needs to be some mechanism for reporting the existing structures in the system and

how they are related together. Such static aspects of the system are not associated

with any particular command but to each and every one of them. MENU systems

perform very well under this task as it is easy to show detailed pictures on the

12

screen. Also by using the menu structure many times the user obtains a good cogni-

tive model on the structure of the system.

MENU systems can also behave very well under the consideration of reference

to other systems.MENUs easily provide options that allow the user to see each

command as it would appear on other systems. The next four sections involve

descriptions of MENU systems.

2.4.1. McDonald & Schvaneveldt

The Cognitive Systems Group at the Computing Research Laboratory are

developing formal methods for interface design (see McDonald et al., 1986;

McDonald & Schvaneveldt, 1987). McDonald and Schvaneveldt have defined theo-

retical motivations for their empirically based approach along with a related discus-

sion of scaling and knowledge acquisition techniques. One application to illustrate

key aspects of their methodology is an ongoing investigation of UNIX users aimed

at improving on-line documentation systems.They are developing a theory of struc-

tural descriptions for UNIX. These will be useful in building a menu-based consul-

tation program which will allow users to efficiently develop accurate conceptual

models of operating systems.

Their UNIX interactive documentation guide (Superman II) (1) is based on

empirically derived representations of experienced users’ conceptual models, (2) has

several perspectives (e.g., functional and procedural), (3) has multiple levels of

abstraction within each perspective, and (4) provides users who are familiar with

other operating systems (e.g., DOS∗) a ‘bridge’ for transferring their knowledge to

UNIX. Their knowledge representation is based on proximities of semantic infor-

mation and is organized in a network structure. The networks are described in

∗ DOS is a trademark of International Business Machines Corporation.

13

Dearholt et. al (1985).We are working closely with the Cognitive Systems Group to

provide empirical backing for any assumptions made in developing the natural lan-

guage understander.

2.4.2. Hayes & Szekely

Another menu-selection approach is described in Hayes (1982) and Hayes &

Szekely (1983). They hav edesigned a system called COUSIN which is acommand-

level interface for operating systems. By command-level we mean the system will

execute commands from the interface. TheCOUSIN system provides two types of

user friendly information: (1) static descriptions of possibly invoked subsystems,

including their parameters and syntax, and (2) dynamically produced descriptions of

the state of current interaction. One of the applications of the COUSIN interface is

to provide a command-level interface to the UNIX operating system, i.e., to provide

an alternative to the standard UNIX shell. COUSIN consists of a network of text

frames connected by named semantic links. Each frame is variable in size and con-

tains less than a screenfull of information. COUSIN shows to the user information

that is hidden from him by a natural language understander. While using a natural

language understander the user does not see, or need to know, the structure of stored

knowledge. However, such information can be found by asking the right questions.

The knowledge exists and is presented to the user only on demand. The natural lan-

guage understander informs the user, in terms of English, the specific pieces of

stored knowledge that are particularly relevant to some query.

2.4.3. Tyler & Treu

Tyler and Treu (1986) describe an adaptive interface design, and a prototype

user-computer interface, to demonstrate both the feasibility and utility of a general

14

adaptive architecture. Thesystem is a command-level interface where the interface

takes a user’s entry and sends a valid command to the operating system.A proto-

type has been designed which will interface the user to a UNIX operating system.

Features of the interface are geared towards the particular user, and the specific task

currently being executed. Theprototype does not provide all possible UNIX com-

mands, but it does make the most commonly used commands accessible through the

interface. There are a number of textual pieces of information which can be used in

giving help on some command. However there is no great theory of how to effi-

ciently represent knowledge about UNIX here.

2.4.4. Billmers & Garifo

Billmers and Garifo (1985) are building knowledge-based operating system

consultants. They hav eimplemented an expert system called TEACHVMS which is

used for helping TOPS-20∗ users learn about the VAX/VMS ∗ operating system.

They are also developing a system called TVX which provides a general operating

system shell useful for designing specific operating system consultants. Both of

these systems are menu-based expert systems. In agreement with our approach,

Billmers and Garifo are interested in planning solutions to complex user tasks,

requiring many steps. The fact that TEACHVMS converts TOPS-20 commands to

VMS commands means that it must contain similarities between concepts from dif-

ferent operating systems. This concurs with our criterion of reference to other sys-

tems. TVXcontains knowledge in two forms: abstract operating system concepts,

and knowledge specific to the target system (i.e., VMS).

∗ TOPS-20 and VAX/VMS are trademarks of the Digital Equipment Corporation.

15

2.5. Limited natural language systems

LNL systems behave like expert systems where the user asks queries using

limited natural language.However, the natural language capability of LNL systems

is not extensive enough to allow adequate concept formation for complex queries.

LNL systems are more friendly than SIMPLE or MENU systems as they allow more

flexibility in the input. LNL systems allow detailed constraint input and can be good

at describing the static structure of the system. LNL’s may also include reference to

other systems in their knowledge representation.

2.5.1. Yun & Loeb

The program CMS-HELP developed by Yun and Loeb (1984) is an example of

an expert system. CMS-HELP serves as an on-line consultant for users of the

VM/CMS∗ operating system.The system assists novice or experienced users who

need to use unfamiliar system facilities. Adviceis given in terms of the sequence of

commands needed to accomplish some user task. The CMS-HELP expert system

was constructed using EMYCIN, a program for developing knowledge-based con-

sultation systems.

2.6. Natural language consultant systems

The advantages of natural language understanders over most LNL and MENU

approaches are numerous. We will not discuss those advantages here, as this has

been done elsewhere (see Douglass & Hegner 1982, p. 1; Wilensky et al. 1984, p.

576). Thesetypes of system perform very well under each criterion of evaluation.

The input is in terms of natural language and therefore there is a very large varied

input. NL’s are very friendly and they supply detailed answers if the knowledge

∗ VM/CMS is a trademark of International Business Machines Corporation.

16

representation is detailed too. Reference to other systems can be encoded into a

knowledge representation. The disadvantage of NL systems is that are very difficult

to build.

2.6.1. Hegner & Douglass

Hegner and Douglass developed a natural language UNIX help system called

UCC (see Douglass & Hegner, 1982 and Hegner & Douglass, 1984). UCC was a

prototype system, implemented in Franz Lisp on a VAX-11/780. It used a simple

natural language front end based on augmented transition networks. The output of

the parser filled slots in so-calledcase frames, which represented the structure of

common queries. The development of a knowledge base and query solver were not

advanced enough so that they could be linked with the front end. Therefore, UCC

generated answers to queries directly from concept case frames rather than from any

particular formal language. The system was tested at Los Alamos National Labora-

tories and it could answer a surprising number of queries adequately. Also, the infor-

mation obtained with test runs was useful in identifying its shortcomings.

There were two major problems with UCC: (1) As the front end included a rel-

atively simple knowledge base, it was unable to answer sophisticated queries with

many constraints involving command options. It could tell the user that thechmod

command is appropriate for changing file protection, yet it was unable to give spe-

cific directions for changing the protection to a particular mode. This could be recti-

fied by linking in the more detailed knowledge base. However, another problem was

more serious. (2) The simple augmented transition network method of parsing was

not sufficient enough to handle the types of queries posed by many users. Itbecame

very apparent while improving the system that the best approach would be to

develop a new, more sophisticated design for the natural language front end.

17

A program called Yucca was an attempt to augment the UCC system in two

ways. Yucca incorporated a much more sophisticated formal knowledge base and

an improved natural language front end. The knowledge base was implemented at

Los Alamos and the University of Vermont. However, due to funding restrictions

this work halted and the system was only partially implemented.

2.6.2. Wilensky et al.

At Berkeley, Robert Wilensky heads a group who have built an understanding

system called Unix Consultant (UC) which processes natural language queries about

UNIX (see Wilensky, 1982; Wilensky et al. 1984, 1986; Wilensky, 1987). Our

approach to consultation is similar and yet different to the one at Berkeley. We are

both building natural language systems, yet the way we do that is quite distinct. In

UC there is no separation and formalization of detailed knowledge on operating sys-

tems in a knowledge base. All aspects of UC make use of one general knowledge

representation called KODIAK (see Wilensky, 1986). This compares to our

approach of having abstract knowledge in the natural language understander and

detailed knowledge in a knowledge base.Another distinction is that presently the

UC program is intended to be an operating system consultant for UNIX, whereas

our system is intended to maintain references to other systems. In building the natu-

ral language understander we are particularly concerned with understanding com-

plex queries where there are a number of operating system commands interrelated

with each other, to denote higher level processes.

2.6.3. Kemke

Kemke (1986, 1987) describes an intelligent help system called the SINIX∗
∗ SINIX is a UNIX derivative dev eloped by SIEMENS AG.

18

Consultant (SC) for the SINIX operating system. The system is intended to answer

natural language questions about SINIX concepts and commands. SC has a rich

knowledge base which reflects the technical aspects of the domain as well as the

users view of the system. Although SC incorporates a knowledge base which con-

tains similar knowledge as our natural language understander, there is no separation

out of the detailed knowledge needed to answer or solve user queries. Therefore, we

see SC as being similar in approach and design to the UC system.

Chapter 3: A knowledge representation

Any good consultant system must include a knowledge representation of the

domain upon which it is meant to consult.A good theory of how to represent that

knowledge is necessary if the consultant is to be efficient and useful. This chapter is

about defining what we think is a good knowledge representation for operating sys-

tems.

We need to investigate the means by which various operating system concepts

can be formalized using an appropriate knowledge representation mechanism. This

representation can then be used effectively to understand natural language expres-

sions involving different concepts.We assume the philosophy of Wilks (1978b, p.

210), “The emphasis here is the reverse of the conventional one in this field: we

stress the form of representation of language and seek to accommodate the represen-

tation of knowledge to that, rather than the reverse.”

3.1. The elements of a representation

It is our belief that people think (however abstractly) of operating system com-

mands in terms of inputs and outputs.People see commands as sets of states of

objects before and after a command is executed. Each command is a black box

which takes a set of objects as input and produces another set of objects as output.

People ask questions about operating systems in the same way that they think

about commands. It turns out that most English queries about operating systems

involve users expressing the goal of obtaining some command.Commonly, users

will try to describe the affect of a required command on some object(s). For exam-

ple, in the query, “How do I print out a file with pagenumbers?”, the user is

19

20

expressing the need for a command to print the objectfile with the objectpagenum-

bers.

It is the constraints specified in a user query that enable us to recognize a com-

mand. Therefore,it seems useful to build knowledge structures for describing com-

mands so that these structures are closely related to possible natural language

expressions of such commands. Natural language queries involving descriptions of

commands can be parsed into some high-level meaning representation.To interpret

queries effectively we need access to domain-specific knowledge. Suchknowledge

could be formulated as abstract representations of actions or objects which are

matched to natural language representations in order to decipher them.

3.2. A representation for objects

There needs to be some data structure for representing operating system

objects. Frameshave been used before in AI (see Minsky, 1975) for knowledge rep-

resentation. We can use frames to contain information about various objects in the

system. Ifobjects are not linked together in some way, then they will have little

meaning in the system. Another useful tool is the ability to specify relations between

different objects. Relations within knowledge representations have been imple-

mented before using hierarchies of objects.Examples of hierarchical representa-

tions are found in Bobrow & Winograd (1977), Brachman (1979), Fass (1986a,

1986b) and Goldstein & Roberts (1977).

Various operating system objects such asfiles, protection, command-name,

last-read-time, creation-time, and passwordcan be represented by object frames.

Object frames should exist statically in the system before any processing begins.

Each object frame should contain two types of information: (1) the information spe-

cific to some object, and (2) the relation between an object and others in the system.

21

We call the formernodeswhile the latter are calledarcs.

Each node is a set of attributes characterizing an object frame. Nodes in object

frames could be specified using an identifier like has. It is possible thathas rela-

tions will contain other object frames.

3.3. A hierarchy of objects

In any hierarchy of objects which are linked together there may be many ways

of defining relations between them. First of all there should be a link to specify one

object as being a type of another. This is useful because we notice that files are types

of container and directory files are types of file. We can call such a relation, atype-

of relation.

Also, certain objects are not types of others but parts of them.For example,

protection is part of a file and so is user id.Creatorandlast-tape-read-timeare also

parts of files. These can be calledpart-of relations.

Certain commands are instances of others. So, the commandslpr, cat, cp, and

pr are all related to thecommand-nameobject frame by aninstance-ofarc relation.

In Figure 3.1 below there is an example of what the object frame for protec-

tion-type should look like.

Protection-type is a part of protection and includes user designators, access

privileges and file access. The object frame for user-designator is shown in Figure

3.2.

It is noted that each user-designator is a type-of designator. User-g, user-u,

user-o are all instances of user-designators (see Figure 3.3).

In the node set for protection-type (Figure 3.1) the secondhasrelation specifies

an object frame called access-privilege. Read, write andexecuteare all instances of

22

(o - f rame pro t e c t i on - t yp e
(arc s (par t - o f pro t e c t i on))
(nod e (has us er - de si gna t or)

(has ac c e ss -pr i v i l ege)
(has fil e - ac c e ss)))

Figure 3.1. Object frame for protection type.

(o - f rame us er - de si gna t or
(arc s (t yp e- o f de s igna t or))
(nod e ()))

Figure 3.2. Object frame for user designator.

access-privilege. Finally, file-access, contained in the thirdhas relation for protec-

tion-type, has instancesaccessand no-access. It is already apparent that objects

need to be related in a complex hierarchy. In Figure 3.4 we show a description of

some of the hierarchy.

From Figure 3.4 we have the relations in Figure 3.5. Figure 3.5 shows direc-

tory-password(a concept from the TOPS-20 operating system) which is defined in

terms of UNIX concepts. This will be particularly useful for helping some user who

is confused as to which operating system he/she is using. In fact it is one of the

23

(o - f rame us er - g
(arc s (i ns tan ce -o f us er - de si gna t or))
(nod e ()))

(o - f rame us er - u
(arc s (i ns tan ce -o f us er - de si gna t or))
(nod e ()))

(o - f rame us er - o
(arc s (i ns tan ce -o f us er - de si gna t or))
(nod e ()))

Figure 3.3. Instances of user-designator.

criteria specified in Section 2.1 that any good consultant system should contain such

referents between different operating systems. In the hierarchy in Figure 3.6 we

show the definition of a file in terms of its components.

3.4. The representation of commands

We know that commands are actions which define transfer relations between

objects. Knowledge structures for commands are necessary in the system.A good

way to represent actions is to determine the existence or states of objects before an

action occurs and also the states after the action has executed. Let’s call the states

before, preconditionsand the states after, postconditions. There should also be

some mention of the person who can perform a particular action.A representation

for commands should include preconditions, postconditions, and an actor. The

question that arises next is, ‘‘What amount of information should be represented?’’

24

Figure 3.4. Hierarchy of file objects.

We could represent the preconditions and postconditions for every command that a

user could ask about. However, that would take a very long time to do, and it would

take a long time to search the database of actions to find the right one, because you

see, every command would be represented as an action. There seems to be no way

out.

25

p l a i n - fi l e
is a type ofnon - di r e c tory fi l e

is a type offi l e
is a type ofcon t a i n e r

d i r e c tory - pa ssword
has app l i ca t i on TOP S- 20
has pa ssword - t yp e

has us er - de si gna t or
has ac c es s -pr i v i l ege s
has fi l e - ac c e ss

Figure 3.5. Relations from object hierarchy for file.

Yet, ‘‘What do we notice about certain commands?’’ They can be grouped

together under certain categories. For example, the commandslpr, pr, and moreall

involve printing information from a file although they do that in different ways. Also

rmdir andrm involve removing objects.Already, we can see a solution to a massive

searching problem.We can represent abstractions of commands as actions.There

will be an action representation forprinting and one formailing and one fordelet-

ing, listing, movingand so on.Have we lost anything by abstraction? Yes. Even if

we have an action representation which has preconditions, postconditions and actors

we have lost the names of the various commands that perform particular cases of an

action. Yet, all we need to do is place the commands in the representation itself and

we call the whole structure an action frame. We call preconditions, postconditions,

actions, and actors, frame components.

26

Figure 3.6. Hierarchy of objects to define parts of a file.

3.5. The necessity of preference

The next problem to be solved is what sort of information should be placed in

each frame component. Well, the preconditions and postconditions should contain

information about objects and how the various commands can effect them.We can-

not define all the objects affected by some action.That would take up too much

space. Ascheme must be defined where onlypreferredobjects are represented.By

preferred objects we mean objects that are usually affected by some action.Not

only must objects be represented in each condition set but the relations between

objects should be there too. Such relations will also be preferred as there may be

infinitely many relations for a given action.

27

This idea of preference is not new in AI. It has been used before by Wilks

(1975a, 1975b, 1978b) in Preference Semantics and Fass (1986a, 1986b) in Colla-

tive Semantics to formulate correct interpretations of natural language sentences. A

good discussion on the relative merits of various types of preference are found in

Fass & Wilks (1983). In Wilensky (1987) there is a description ofconcernswhich

are preconditions particularly relevant to a given plan. Thetermconcernis synony-

mous with our concept of preferred conditions.

3.6. A dilemma in ‘‘weak’’ versus ‘‘strong’’

Another question arises as to what level of detail each object should be repre-

sented. We could represent objects at their most detailed level or they could be rep-

resented at their most general or abstract level. Plain files, non-directory files, and

device files are all types of file. Therefore, a file could be represented as justfile or

plain-fileor non-directory-fileor device-file.

We must consider the disadvantages and advantages of choosing specific or

general representations. To do that we consider what the representations are being

used for. The representations are being used to understand user queries.

3.6.1. Preconditions

People tend to talk about printing files rather than printing plain files or device

files. Aspeople tend to specify weak preconditions, and as we want to match these

knowledge structures to what people say, then we should use weak preconditions in

the action frames too. Therefore, we try to make the preconditions of an action as

weak as possible. Notice that we use the word tendhere, i.e., people can mention

strong preconditions in their queries although that is not what they usually do.

Already we have specified a preference to having weak preconditions for action

28

frames. Therefore we represent files at a general level as file in the precondition set.

It is important that we allow some mechanism whereby stronger preconditions

can be derived if they are needed. It wouldn’t do for the action frame precondition

sets to know only about files and not plain files or directory files or any other types

of files. ‘‘What do we do?’’ The object hierarchy, described earlier, has information

about files and their types. Therefore it is possible for the system to derive more spe-

cific objects if they are needed. The power of action frames lies here.Even though

action frames are abstract, more specific frames can be generated easily by inferenc-

ing on the object hierarchy and inserting new objects in the action frames.We will

show how that can be done in the next chapter.

A question of efficiency arises as preconditions were defined to be as weak as

possible. Saywe were to represent strong preconditions. Then many of them would

have to be represented. Therewould be a lot of precondition objects and the only

way to minimize these would be to represent at best a minimal set.Therefore it was

a good move to represent more general objects, just like we represented more gen-

eral actions, and we can derive the more specific objects from the object hierarchy if

they are needed.

3.6.2. Postconditions

Postconditions for any action are changes in object states resulting from the

execution of that action. In all action frames the postconditions represent changes in

state of the precondition set. People tend to specify strong postconditions when ask-

ing queries. For example, someone may say, ‘‘How do I print a file with pageheaders

and line numbers?’’. Peoplespecify such strong postconditions aspageheadersand

line numbers because they want to define precisely what an action or command

should do. Therefore we have a second preference for strong postconditions as

29

people use them in queries. In the postcondition set we include objects such asnon-

directory-filesrather thanfiles.

We try to represent the “strongest” postcondition set for any action. By

strongest we mean the maximum number of (or most constraining) postconditions

necessary to characterize some action sufficiently. We know non-directory-filesto

be types of file (Figure 3.5) and that either could denote postconditions for printing

files. However, the use of non-directory-files (strong) as a postcondition for printing

rather than files (weaker) is a more precise definition about the effects of printing.

That is why we reflect non-directory-file in the postcondition set rather than file.

There is no harm in weakening the postcondition set when that needs to be done.

One could argue that we are not being efficient in representing postconditions

as they inv olve strong rather than weak information. There will be many of them.

However we claim that strong postconditions, even though represented less effi-

ciently, will make the system more globally efficient. That happens because there

will be much time saved in not having to infer strong postconditions from weaker

ones (if we had used them) many times. And, ‘‘Why would we have to do that many

times?’’ Because, people usually mention strong postconditions when they ask

queries about operating systems.

3.7. The representation of conditions

Conditions on actions can be represented as constraints on objects. Objects and

relations between them will be preferred. ‘‘How do we know what preferred objects

and relations are?’’. That is an empirical question and will not be discussed further

here. However, we will assume that certain objects and relations will be usual for

some action. For any frame there will be certain preconditions that should not exist.

For example the precondition set for printing should specify the non-existence of

30

directory files because people do not usually print directory files. These types of

conditions are calledmandatory.

Mandatory conditions are useful for a very important reason. Say mandatory

conditions did not exist and files (weak) were represented in the precondition set.

As directory files are types of file (Figure 3.4) the system can now infer (wrongly)

for the PRINT∗ frame that directory files are printable.Yet, this will not happen

because by using mandatory conditions which override all other frame conditions

the problem disappears. The mandatory condition for print declares directory files

to be non-printable.

It seems likely that the postcondition sets will not always contain mandatory

postconditions because these will have been recognized by the precondition set.

Therefore, mandatory postconditions will only be concerned with problems where

specified output can not be obtained from correctly specified input. We would only

enter those mandatory postconditions which people usually get wrong.

There should be a set of conditions which areoptional for some action. These

would involve file contents being visible-byte-sequences and the existence of print-

ers. Also, we definedefaultconditions for each action frame which contain the most

general information about an action.For example, for the print frame the most gen-

eral information about printing would be that one prints files on the screen and that

would be the default.

3.8. Linking preconditions to postconditions

It would be useful if we could define a correspondence between preconditions

and postconditions. Such knowledge would aid in predicting the most likely post-

condition (or precondition) for some explicitly mentioned precondition (or

∗ We use upper case letters to denote any action frame, or information contained in one.

31

postcondition) in a user query. These predictions would help in understanding user

queries, because it would be a useful check if predicted information matched that

coming in. It is the ability to predict preconditions and postconditions for user

queries that will give added power to the system. Otherwise, it will be difficult to

formulate a good meaning structure to be solved by the knowledge base.

A correspondence is expressed implicitly between the optional conditions in

the precondition and postcondition sets.Say,{ P0, P1, ... Pn } denote the optional

preconditions for some action A. Then, these are related to the optional postcondi-

tions{ Q0, Q1, ... Qn } so thatP0 <=> Q 0, P1 <=> ∗ Q1, ... Pn <=> Q n for action A.

So, the first optional precondition in the precondition set corresponds to the first in

the postcondition set, the second to the second, and so on. One-to-one correspon-

dence between preconditions and postconditions is implicit: it is theposition of a

particular condition in its precondition/postcondition set that determines correspon-

dence and there are no other markers to specify that.

As we represent postconditions at a stronger level than preconditions, many sit-

uations will arise where a given precondition will correspond to, or map onto, two or

more postconditions. If we decide to write out all the optional preconditions explic-

itly then there will be some redundancy in the precondition sets as some may be rep-

resented twice.

However, we shall write out preconditions and postconditions as there should

not be too many of them for a given frame. If it turns out that many conditions need

to be repeated exhaustively for action frames, the correspondence can be denoted

explicitly by some flagging system rather than writing the same preconditions twice.

The fact is that the cost of a checking algorithm for flags may be too costly if there

are not too many conditions for most frames.

∗ ‘‘ <=>’’ denotescorresponds to.

32

3.9. Actions and actors

It is also necessary to specify the possible actions that cause transfer between

preconditions and postconditions. Associated with each action will be a number of

options. Actions will include commands like lpr, lpq, and options include -l, -a, -s

and so on. We call the complete organization of object frames, object hierarchy and

action frames,Tr ansfer Semantics.

3.10. The correspondence between queries and knowledge

In this section we will show how various queries could be interpreted using

object and action frames. While doing this we keep in mind that action frames are

representations for describing operating system commands.

We adopt a distinction between concept description queries and dynamic

queries. This distinction has been emphasized by Hegner (1987). Concept descrip-

tion queries are simple queries about objects which involve no manipulation of those

objects. Typical concept description queries are, “What is a directory?”, “What is

pr?”. Dynamicqueries are those which involve actions transferring objects.Typical

examples are, “How do I print a file on the Imagen?”, “What is the option on the cat

command which numbers lines?”, “How do I print a listing of my directory?”.

3.10.1. Concept description queries and knowledge

In handling concept description queries such as, “What is read protection?”

the hierarchy of object frames becomes very useful.From the shapshot of the net-

work in Figure 3.7 it is possible to locate relevant object frame relations. The fol-

lowing section of network is used in generating a static domain-specific representa-

tion of the latter query.

33

Figure 3.7. Snapshot from object hierarchy for protection type.

Now, say some user has used the TOPS-20 operating system for most of his

computer lifetime and decides to use UNIX for a change.Then he/she is likely to

assume that UNIX is similar to TOPS-20. One could expect queries such as, “What

is the permanent storage limit?”. The relations in Figure 3.8 are used here.

d i r e c tory - fi l e
has pe rma nen t - s torage -l i mi t

has app l i ca t i on TOP S- 20
has s imi l ar i t y d i sk - spa ce -ha rd - l imi t

Figure 3.8. Similarities between different operating systems

34

The above relations denote the similarity between concepts from two operating

systems. The similarity between disk-space-hard-limit and permanent-storage-limit

is marked using has relations. This mechanism is especially useful if a user thinks in

terms of one operating system but is using another.

3.10.2. Dynamic queries and knowledge

The object hierarchy is availed of again for dynamic queries.However, as

dynamic queries involve actions, action frames must be referenced. Say, for example

we want to interpret the query, “What is the option on the cat command which num-

bers lines?”. Through searching the action frame preconditions, a precondition men-

tioning files and their containing visible-byte-sequences would be matched.The rel-

evant postcondition is specified by the file again appearing on the screen and having

a line numbers filter applied.This is done by moving down the object hierarchy

from filter, which occurs in the postcondition, tonumbered-lines, which are a type

of filter. Also, thecat action in is marked because “cat” was mentioned in the query.

The user is marked as being the relevant actor.

Similarly, the query, “How do I print a file on the Imagen?” matches an

optional precondition where files contain visible-byte-sequences. Also, the exis-

tence of a printer queue is needed. The postcondition will specify output coming

out on a printer rather than the screen. There will be no match for the action compo-

nent of a frame, as no action was mentioned, and the actor is againuser.

3.11. Alternative representations of knowledge

The UNIX Consultant (UC) (see Wilensky et al. 1984, 1986) emboies a knowl-

edge representation called KODIAK. The central theme of KODIAK is that it is a

relation-based system.Wilensky (1986, p. 23) says, “... KODIAK relations have a

35

fixed number of argument positions. Moreover, each argument position of a relation

is itself a full-fledged object. In general, the meaning of these argument-objects is

derived from the named relation that hold between them.” KODIAK has a wide rep-

resentational scope and still maintains the possibility of conforming to a canonical

form. At the action frame level Transfer Semantics is also a relation-based system

where actions are described in terms of precondition-postcondition correspondence.

In Transfer Semantics the meaning of any action is the precondition and postcondi-

tion set for that action. Wilensky decides to represent all concepts in terms of rela-

tions. We only see the need to represent actions (which manipulate objects) with

relations. Many objects are not defined by relations in Transfer Semantics although

there may be relations between them.

The UC system is not presently intended to handle queries using terminology

from operating systems other than UNIX.We are more concerned with understand-

ing complex queries where there are a number of operating system commands inter-

related with each other, to denote some higher level process. Itseems that Transfer

Semantics, which captures the meaning of commands, in a way that people do, is a

suitable formalism for abstracting operating system behavior.

Kemke (1987) has independently come up with a knowledge representation for

operating systems quite similar to our own. TheSINIX Consultant Knowledge Base

consists of a taxonomical hierarchy of concepts according to different views or clas-

sifications of domain concepts. These domain concepts are commands and virtual

objects from the SINIX operating system. Higher level concepts correspond to nat-

ural language terms, mental model entities, or more general abstract actions and

objects. Eachconcept is described with respect to its function, structure, use, and/or

relation to other concepts. The SINIX knowledge base is organized, like ours, as a

hierarchy of concepts. Theleaves of the hierarchy correspond to SINIX objects or

36

commands. Kemke also includes preconditions and postconditions in her defini-

tions.

There are some differences with our approach. We do not include actions in a

hierarchy, although action frames do make use of the hierarchy. In Kemke’s knowl-

edge representation actions are stored explicitly at different levels of detail in a hier-

archy. For example,communicate-with-useris stored at a level above send-mailand

read-mail in the hierarchy. Howev er, these are not stored as different actions in a

Transfer Semantics hierarchy. We represent actions abstractly, and as frame objects

are defined in the hierarchy it is possible tocomputenew action frames (which are

stronger or weaker) from these object definitions.

The work by Schank (1975) on Conceptual Dependency (CD) is largely con-

cerned with representations for actions.He proposes that complex representations

are composed out of a well-defined set of primitive concepts. Thecentral theme of

CD is that meaning representations have canonical form so that things meaning the

same are represented in the same way even though they may be expressed differ-

ently. CD inv olves decomposition into primitives where all complicated entities are

represented by simple elements.

The problem with CD is that too much concentration on canonical form has led

to a lack in formalizing any specific high-level objects. Wilensky (1986) shows that

CD poses problems in computing certain types of inference. It is the very decompo-

sition into primitives that causes inference problems.For example the system tries

to make inferences aboutbuying in terms of the ATRANS (abstract transfer) primi-

tive. As Wilensky (1986, p. 12) puts it, “...decomposing conceptual objects into

primitives doesn’t help one make inferences any more than it gets in the way. It

facilitates inferences about more abstract ideas like for example, change of posses-

sion, only at the cost of making it more difficult to make inferences about more

37

complex ideas such as buying.”

Transfer Semantics is similar to CD in that it embodys representations for

actions. However, the difference is that TS is a mechanism for describing the more

complex effects of performing specific actions on particular objects. It is important

to represent the complex differences between actions as well as their similarity and

this is exactly where CD fails. Certainly, CD would present many problems if we

were to use it in any formalization of operating system actions or commands. In

fact, Wilensky et al. (1984) and Arens (1986) found this out when they used CD in

an earlier version of the Unix Consultant (UC).

Our object frames are similar to the frames proposed by Minsky (1975). Yet,

Minsky (1975, p. 234) decides, “that any event, action change, flow of material or

information can be represented by a two-frame generalized event.” This is in con-

trast to our system where single action frames are used to represent state changes of

objects. Wilks (1978b) describes semantic structures called pseudo-texts for natural

language understanding.Wilks (1978b, p. 203) defines a pseudo-text as “...a struc-

ture of factual and functional information about a concept or item, and is intended to

fall broadly within the notion of frame in the sense of Minsky, Charniak, and

Schank...” Pseudo-texts are also similar in function to the object frames we describe

herein. Our action frames have similarities with the scripts discussed by Schank &

Abelson (1977). Action frames could be interpreted as scripts representing the

behavior of various operating system commands.

3.12. The limits of knowledge

It is concluded that Transfer Semantics is an appropriate mechanism for

describing actions and how these actions transfer objects. It seems a particularly

effective mechanism for abstracting characteristics of various computer operating

38

system actions in a concise formalism. We hav e shown how Transfer Semantics

could be used to specify domain-specific knowledge in order to interpret concept

description and dynamic English queries. The use of Transfer Semantics in an oper-

ating system consultant will enable the production of detailed representations of

user queries. These representations will represent how the system understood a natu-

ral language query.

A particularly useful feature of Transfer Semantics is that similarities between

object frames are marked. Therefore,ev en though a query may be presented to the

understander with TOPS-20 lingo, that query can be interpreted and answered in

terms of UNIX. It is hoped that Transfer Semantics will be used to model other

operating systems as research continues.

In building our knowledge representation for operating systems there have

been a few things left out.There was no attempt to describe how OSCON gets the

right frame for some query. Such processes will be discussed in Chapter 6.Nor,

have we described the meaning representation of an English query before the frames

are matched to it. These representations are also discussed in Chapter 6.However,

ev en more important is the fact that the knowledge representation itself may not be

complete.

Sets of conditions for action frames are only preferences in the system that are

typical of some action.We use preferences for two major reasons: (1) in order to

select the correct frame, and (2) if we specified all possible transfer conditions on

frames they would certainly become very large. Yet, the action frames are not

restricted to preferred conditions because of their relation with the object hierarchy.

The query, ‘‘How do I print a plain file?’’ cannot be handled by Transfer

Semantics as it stands.That is because preconditions are represented weakly and

39

plain files do not occur in the PRINT frame precondition set. We know the object

hierarchy can be used to derive a more specific action frame to handle this query.

However, we must work out exactly how that is done. Questions arise as to how we

know when to use the object hierarchy to find new information about objects in the

frames. Moreimportant, what sort of rules define how we do this. Somequeries

may involve more than one action and there must be some rule for adding actions

together. The solutions to these questions are tackled in the next chapter.

Chapter 4: Some rules of inference

In the previous chapter we discussed and developed a knowledge representa-

tion for operating systems called Transfer Semantics.The job of Transfer Semantics

is to act as a good knowledge representation which can be used in understanding the

queries people ask about operating systems. There were certain elements of Trans-

fer Semantics that were not explained in depth. For example, ‘‘How does the system

know when to use the object hierarchy to obtain new knowledge?’’ M oreover,

‘‘ What does OSCON do when it finds out that new knowledge is necessary?’’

‘‘ What happens if someone uses more than one command in a user query?’’ It i s

important to write out explicitly the mechanisms to solve these questions. That is

what this chapter is about.

4.1. A need for inference rules

A knowledge representation scheme is never complete while there are no

strategies to manipulate that scheme.As conditions on action frames are preferred,

we choose those conditions typical for some action.This is done for three reasons:

(1) so that the correct frame will be selected for a particular query, (2) frames would

become very large if all possible transfer conditions were specified, and (3) inherent

requirements for specifyingweak preconditions andstrong postconditions on

frames. Thevery fact that frames contain only preferred conditions means that

Transfer Semantics is weak. That can be shown explicitly by various examples. The

power of Transfer Semantics must be increased.

Some interesting problems arise when Transfer Semantics is used to under-

stand natural language queries.A clue to such problems was already given above.

40

41

Only preferredconditions on frames are deployed. Otherwise,the frames would

become enormous and difficult to handle. Also we showed in Chapter 3 why it

would be beneficial to represent weak preconditions and strong postconditions in

frames. However, by doing that we have constrained the preconditions and postcon-

ditions and that causes problems. Let’s look at some of the problems.

Say some user decides to enter the query, ‘‘How do I print a file on the

screen?’’ This query will be parsed first, into a shallow form, and then into a seman-

tically deeper meaning representation. So far there is no problem. The next step in

the control flow of the understander would be to select a domain-specific action

frame. ThePRINT frame should be selected.However, that may not happen as the

postcondition set for the PRINT frame only knows about specific NON-DIREC-

TORY files and not FILES. This problem occurs because in each frame the post-

conditions are madestrong. NON-DIRECTORY-FILE from the postcondition set

does not matchfile† (or the meaning representation that it is parsed into) from the

user query. Thus the above query may not be processed correctly by the natural lan-

guage understander. We need a rule to weaken the system reference to NON-

DIRECTORY-FILE so that it becomes FILE.This is done by inferring non-direc-

tory-files to be files from the object hierarchy.

Another problem arises with the query ‘‘How do I print a plain file?’’. As pre-

ferred conditions are stored in frames, there will only be mention of FILEs in the

precondition set for the PRINT frame. In any frame we make the preconditions as

weak as possible.The frame selection process may mistakenly reject the PRINT

frame. Aninference rule is needed to strengthen the system reference to FILE so

that it will match plain file.This problem is the complement of that above. In this

case the user query has stronger information (plain file) whereas above it had

† Lowercase italicized characters are used to denote information from a user query.

42

weaker information (file). Thereis a requirement for an inference rule which will

strengthen the system reference to FILE so that it becomes PLAIN-FILE.

Another type of problem occurs when more than one action or command is ref-

erenced in a user query. For example, in the query, ‘‘How do I find the misspellings

in a file and then ‘more’ them?’’, the user has specified two concepts. Theconcepts

detecting-spelling-mistakesand moreing∗ have been related together in this query.

An inference rule is needed so that action frames from Transfer Semantics can be

composed or interconnected in some way.

To summarize, there are three clear problems identified in the examples above:

(1) sometimes postconditions for action frames are too strong, (2) sometimes pre-

conditions for action frames are too weak, and (3) sometimes one frame is not

enough to handle a query. Transfer Semantics will not work without inference rules.

There is no requirement to define specific rules for every example of these problems.

Any rules we develop will have to be general enough to cater for numerous natural

language examples of the problems above. Let’s define some inference rules to take

care of the above problems and some others.

4.2. A language for inference rules

It has already been decided that there need to be some rules which the system

will use as a guide to selecting information from the object hierarchy. We need a

language to define these rules.Of course, any language we define will only be an

aid to describing the inference processes involved. Thecomputer program would

probably have all the rules implemented explicitly in functions or routines and

would not need to worry about the language itself.

∗ ‘More’ is a command from UNIX which produces formated output on the screen.

43

There are many languages possible while defining inference rules. There are

ev en more ways of implementing the rules once they hav ebeen defined.Axiomatic

semantic techniques have been applied in exploring the logical foundations of com-

puter programming. Axiomatic semantics seems a most lucid and explanatory

method for defining our rules.We can construct abstract formalizations of inference

in the spirit of axiomatic semantics. First, lets discuss the foundations of axiomatic

semantics and get used to some notation.

Axiomatic semantics has been used in the formal specification of the syntax

and semantics of computer programming languages. The paper by Hoare (1969) is a

classic reference on the core ideas of axiomatic semantics.Many of Hoare’s ideas

were stimulated from a paper by Floyd (1967).A more mathematical description of

axiomatic semantics, and particularly program verification, is described in Stanat &

McAllister (1977). Other discussions are found in Hoare & Wirth (1973) and

Algai ́c and Arbib (1978). Owicki and Gries (1976a, 1976b) apply the approach to

parallel programming. A good introduction to the semantics is formulated by Pagan

(1981).

An axiomatic semantics for programming languages will be sufficiently

defined if the specifications enable one to prove any true statement about the effect

of executing any program or program segment. There is also the requirement that

the specifications do not allow the proof of any false statements. Specifications are

analogous to the axioms and rules of inference from a logical calculus. Each specifi-

cation describes a minimal set of constraints that any implementation of the subject

language must satisfy. Computer programmers have used axiomatic semantics to

construct proofs that programs possess various formal properties. Logical expres-

sions are used to make assertions about the values of one or more program variables

or the relationships between these values.

44

The class of assertions include formulae of the form,

{P} A {Q}

where P and Q are logical expressions, and A is a construct or statement from the

subject language. The notation above is interpreted to mean that, ‘‘if P is true before

the execution of A and if the execution of A terminates, then Q is true after the ter-

mination of A’’ . P is called thepreconditionof the assertion and Q thepostcondi-

tion. Any assertion of the form {P} A {Q} will be either true or false. It is assumed

that a program will terminate after the execution of any A. Axiom schemata can be

developed for various constructs in the language.Rules of inference (proof or

deduction rules) enable the truth of certain assertions to be deduced from the truth of

others. Arule of inference of the form shown in Figure 4.1 withH1,H2,.... Hn being

general assertions means that, ‘‘given H1,H2,.... Hn are true, then H may be deduced

to be true’’. This is called thefirst principle of deduction.

H1,H2,.... Hn
H

Figure 4.1. Definition of the first principle of deduction.

Also we define a rule of inference of the form shown in Figure 4.2 which

means that, ‘‘if Hn+1 can be deduced by assuming the truth ofH1,H2,.... Hn, then H

may be deduced to be true.’’ t hen H may be deduced to be true’’. This is called the

second principle of deduction.

45

H1,H2,.... Hn|- Hn+1
H

Figure 4.2. Definition of the second principle of deduction.

These rules of inference are independent of any particular domain under

description. Itis possible to build an axiomatic semantics for a programming lan-

guage by defining many specific rules of inference. Some of the rules defined below

have parallels with those for describing programming languages. First, let’s define

some useful notation.

4.3. A language for representing actions

We define a language for representing operating system actions or commands.

The notation in Figure 4.3 is used to denote the fact that some user U can execute

the action A to transfer the precondition set ({P}) to the postcondition set ({Q}).

{ {P} A {Q} } : U

Figure 4.3. A language for representing actions.

46

We call the information inside the bold braces ({ }) a command environment.

The command environment describes the results of multiple or single commands.

There may be many command environments existing in the system and many differ-

ent users executing these. Also, any execution of a command environment will cause

a state change in the system.Explicit objects within the precondition set {P}, or

postcondition set {Q} shall be represented by lower case characters whereas actions,

A, shall be represented by upper case characters.Trivially, if there are no precondi-

tions imposed on some command the we write TRUE A {Q}. We also assume that

the execution of action A does not have side effects which we do not know about.

An example of a command environment for the COPY command is shown in Figure

4.4.

{ {,,,file,,/usr/afzal/format,,} COPY {,,non-directory-file,,/usr/paul/papers,}} :

User

Figure 4.4. A command environment for the COPY command.

We use commas to show that only some of the objects in condition sets are

being made explicit. There may be many more. Thenamed objects in precondition

and postcondition sets refer to similar objects from the user query. These objects

will also have definitions in the object hierarchy. If they do not then the system will

not understand them.For clarity, we usually present the same referent as used by

the user to denote objects. Of course, this is not what really happens as all queries

are parsed into meaning structures. Also, the frames do not contain trivial objects

for pre/postconditions, but constraints on objects.We do not show the relationships

47

or constraints between objects in our notation.They are not needed to explain the

salient ideas in this Chapter.

4.4. The first rule of consequence

One problem with Transfer Semantics is that conditions specified in the post-

condition set are too strong to match user queries.There needs to be some method

of weakening them.Let’s take a look at the problem query again. The user asked,

‘‘ How do I print a file on the screen?’’ The problem was that any frame matcher

couldn’t matchfile in the query (or whatever meaning representation it was parsed

into) to NON-DIRECTORY-FILE file in the postcondition set for the PRINT action

frame. We can use a rule of inference in unison with the object hierarchy to locate

NON-DIRECTORY-FILEs as types of FILE. That is what we want, and the rule of

inference is called theFirst Rule of Consequence. In general we have the formula

shown in Figure 4.5.

{ {P} A {Q} , Q => R

{P} A {R} } : U

Figure 4.5. Definition of the first rule of consequence.

This general rule states that if {P} A {Q} is true and the postcondition Q

implies R another postcondition, then the system can infer {P} A {R} to be true too.

The system has derived a new frame <{P} A {R} U> by producing the postcondi-

tion set {R} from the postcondition set {Q}. More specifically, for the example

48

noted above we get Figure 4.6.

{ {P} PRINT {,,non-directory-file,,} , non-directory-file => file

{P} PRINT {,,file,} } : User

Figure 4.6. Application of the first rule of consequence.

The first rule of consequence is applied to the specific natural language form

and we note that if the object frame FILE exists in the postcondition set, and NON-

DIRECTORY-FILE implies FILE, then {P} PRINT {,,file,} is also true. Now, the

new frame <{P} A {,,file,} U> will match the natural language query and the frame

selector can choose the correct frame.

4.5. The second rule of consequence

Another problem with Transfer Semantics was that sometimes preconditions

for frames are too weak. There needs to be some method of strengthening precondi-

tions. Saythe user asked, ‘‘How do I list a plain file?’’ The problem was that the

precondition set for the LIST action frame only knows about FILEs and not PLAIN-

FILEs. The frame selector may reject the listing frame. But, from an object frame

hierarchy the system could have inferred a PLAIN-FILE to be a type of NON-

DIRECTORY-FILE, and a NON-DIRECTORY-FILE to be a type of FILE. Then

frame selection would work better. The rule of inference needed here is called the

Second Rule of Consequence. The rule takes the general form shown in Figure 4.7.

49

{ S => P , {P} A {Q}

{S} A {Q} } : U

Figure 4.7. Definition of the second rule of consequence.

This general rule describes that if another precondition S implies the precondi-

tion P, and {P} A {Q} is true, then the system can infer {S} A {Q} to be true too.

The system has derived a new frame <{S} A {Q} U> by producing the precondition

set {S} from the precondition set {P}.For the example problem we derive a spe-

cific formula shown in Figure 4.8.

{ plain-file => file , {,,file,} LIST {Q}

{,,plain-file,} LIST {Q} } : User

Figure 4.8. Application of the second rule of consequence.

If the object frame FILE exists in the precondition set, and PLAIN-FILE

implies FILE then {,,plain-file,} A {Q} is also true. It will be easier for the frame

matcher to choose the PRINT frame now. Note that in this particular example we

have applied the implication operator twice, i.e., plain-file => non-directory-file, and

non-directory-file => file.Before we go on to discuss a very powerful inference rule

50

there is a need to clarify some of the ideas above. There are two things we wish to

clear up: (1) a question of inference direction, and (2) the meaning of the implica-

tion operator ‘‘=>’’.

4.6. Inference direction and the meaning of implication

In applying the first rule of consequence we used non-directory-file => file, and

in applying the second rule of consequence we used plain-file => file.However,

there is a subtle difference in the way we did that for each rule.In the former case

we already had NON-DIRECTORY-FILE as a postcondition in the frame and found

FILE from that. Yet, in the latter case it was FILE that was in the frame. In the first

case it’s easy to move up an object hierarchy from NON-DIRECTORY-FILE to

FILE (stronger to weaker). In the second case how did we get, plain-file => file?,

because non-directory-file => file, and directory-file => file, and device-file => file,

and all those things that are types of file => file. This could have been done by find-

ing all the objects that implied file until one matched with the user query. That’s all

right for this example because we would only need to derive a handful of new

frames. However, in any extended object hierarchy it may take forever to get the cor-

rect frame.

So, the way to do inference is to take the semantic representation of some

object mentioned by the user (e.g.,plain file) and to derive a relation between that

and what exists in the frame. Of course we are lucky here because it turns out that

what the user said was correct.Plain files can be a good precondition for printing. If

the user specifies an incorrect precondition then no relation may exist and we will be

stuck. Yet that is fine, because the user was wrong in the first place and we would

tell him so.

51

Another point which needs clearing up is the meaning of the implication opera-

tor in the inference rules described above. What does it mean for non-directory-file

=> file? Intuitively, this means that a strong object always implies a weaker one if

and only if those objects are related and of the same type. In the object hierarchy

the relationship between non-directory-file and file istype-of. Therefore, if one

object is a type of another, one implies the other. This would also be the case with

an instance-ofrelation, but not withpart-of. Implication is not commutative; device-

file => file is true, this does not mean that file => device-file is also true.However,

implication is transitive for type-of relations but not instance-of relations. If plain-

file => non-directory-file and non-directory-file => file, then plain-file => file.A

basis for implication within command environments has now been defined.

The implication operator ‘‘=>’ ’ is comparable with ISA (is a) and AKO (a-

kind-of) links which have already been described in the field of knowledge represen-

tation. For example, Fass (1986a) describes such operations by demonstrating

moves along ‘‘ancestor’’ paths in a semantic network. Othersuch descriptions are

found in Bobrow & Winograd (1977), Brachman (1979) and Goldstein & Roberts

(1977).

4.7. A theory and representation of query embedding

Many queries about operating systems involve more than one action to com-

plete some process. For example, the query, “How do I stop a listing of my direc-

tory, which is printing on the Imagen?”involves three actions:removing, listing and

printing. We call such queriesembedded queries. The previous query is an an

example ofexplicit embeddingwhere three actions are explicitly mentioned.

It is possible to define a language for describing embedded commands or

actions. We use the notation [A1 < A2 < ... An] to denote an embedding set where

52

action A1 is embedded inside actionA2, and so on. One can think of embedding in

terms of a stack whereAn is pushed on top ofAn−1 and so on. Interpreting the

stack, the postcondition {Q} from performingA1 is passed as a precondition toA2

and so on until we reach the top of the stack. For the previous query we have the

embedding set, [LIST < PRINT < REMOVE] and for the query, “How do I print a

listing of my directory on the Imagen?” we get, [LIST < PRINT].In the latter

example a directory is initially listed and then printed. In effect, the concept of list-

ing is embedded inside printing. Certainly, in order to interpret queries involving

embedding, we need to use some other inference rule to process action frames.

4.8. A rule of composition

As seen in the previous section a third power problem with Transfer Semantics

is that sometimes people like to mention more than one action in a query. It is nec-

essary to have an inference rule which concatenates or composes action frames

together. If this is not the case then the frame selection mechanism may try to select

between two different frames which are both relevant to the query. The rule for link-

ing frames together is called theRule of Composition. The general form for the rule

of composition is given in Figure 4.9.

This general formula states that if {P}A1 {Q} is true, and {Q} A2 {R} is also

true then we can infer {P} [A1 < A2] { R} to be true too. In effect, this rule specifies

that the postcondition set found by applying a number of actions in sequence will be

the postcondition set derived by applying the postconditions of any action in the

sequence as preconditions to a subsequent action. It is important to note here that

{Q} may only represent a subset of the total postconditions ofA1 or total precondi-

tions for A2. Also, the rules of consequence may need to be applied to show up sim-

ilarities between the postcondition forA1 and the precondition forA2. A more

53

{ {P} A1 {Q} , {Q} A2 {R}

{P} [A1 < A2] {R} } : U

Figure 4.9. Definition of the rule of composition.

specific formula for the example query, ‘‘How do I detect misspellings in a file and

more them?’’ i s giv en in Figure 4.10.

{ {P} SPELL {Q} , {Q} PRINT {R}

{P} [SPELL < PRINT]{R} } : User

Figure 4.10. Application of the rule of composition.

From the above specific inference rule we deduce that if the postcondition of

the action frame SPELL is applied as the precondition to PRINT, then it is inferred

that the postcondition of PRINT is the postcondition of executing both actions. It is

easy to think of the rule of composition as describing a mechanism which processes

many objects and many actions. Therule is a Many Object-Many Action definition.

The rule of composition is an abstract representation of a mechanism for com-

posing various commands. It is powerful because it allows us to compose command

environments. We will term environments with more than one commandmulti-

54

commandenvironments. Itis possible to build a structure representing the state of

the system at any time by concatenating command environments. We will use the

term system environmentto describe a complete user session (all commands and

objects used) with an operating system. System environments are multi-command

environments in the extreme. Therule of composition acts as a generator of multi-

command environments. Itcan therefore be used by the natural language under-

stander to understand any plans the user may mention implicitly in a query. We shall

call the plan understanderPlanCon. PlanCon will embody the rule of composition

and the two rules of consequence.

Concatenated command environments can be produced dynamically by Plan-

Con on request.Some user may wish to know what happens to a number of objects

after applying a number of actions. Using PlanCon OSCON could construct the

state of the users view of some system involving any sequence of commands. The

user or OSCON would be able to determine if the sequence in mind was productive

or detrimental. PlanCon will enable OSCON to build representations of the state of

some simulated environment envisaged by a user who is asking queries in a dialogue

or context mechanism. A good description of such a mechanism is discussed by

Arens (1986).

Now we hav etaken care of three very visible problems that Transfer Semantics

would have without inference. Three more inference rules will be defined for com-

pleteness. Theseare called the AND, OR and No-consequence rules.

4.9. The AND rule

The AND rule specifies a conjunction of constraints which may be necessary

for some action.Here’s an example query where the AND rule would be applied:

‘‘ How do I append the file mbox to /usr/paul/post?’’ In this case the user wants to

55

append one file to another. Let’s not worry for now about how the system knows

that /usr/paul/postis a file. The system needs to AND each file as a precondition to

the APPEND action frame. The general form of the AND rule is shown in Figure

4.11.

{ {P} A {Q} , {P′} A {Q′}

{P /\ P′} A {Q /\ Q′} } : User

Figure 4.11. Definition of the AND rule.

This general formula states that if {P} A {Q} is true and {P′} A { Q′} is true

then it is possible to infer {P /\P′} and {Q /\ Q′} to be true too. We show a more

specific formula for the example query above in Figure 4.12.

{ {,,,mbox,,,} APPEND {Q} , {,/usr/paul/post,,} APPEND {R}

{,,,mbox,, /\ ,,/usr/paul/post,} APPEND {Q /\ R} } : User

Figure 4.12. Application of the AND rule.

From the above specific inference rule we deduce that if the preconditions

mbox, and /usr/paul/postare to be applied to the APPEND action frame, then these

preconditions can be ANDed together and applied at once. In the example above we

56

have included, for clarity, the actual names of the copied files. Of course, in reality

the file names are parsed into a meaning representation and the system would deter-

mine the types of these files.They may both be PLAIN, or one PLAIN the other

NON-DIRECTORY and so on.Naturally, other processes are used to determine the

type of a file. It is possible to think of the AND rule as processing many objects

through one action. This is a Many Object-Single Action definition.

4.10. The OR rule

The OR rule specifies the disjunction of a number of preconditions for some

action. Thesepreconditions will produce a set of disjoined postconditions.An

example query where the OR rule is applied would be, ‘‘How do I delete the files

mbox and .mailrc?’’ In this case the user wants to know how to delete two files

rather than one. The system can OR representations of the two files as preconditions

to the DELETE action frame. The general form for the OR rule is given in Figure

4.13.

{ {P} A {Q} , {P′} A {Q′}

{P \/ P′} A {Q \/ Q′} } : U

Figure 4.13. Definition of the OR rule.

This general formula states that if {P} A {P′} is true and {Q} A {Q′} is true,

then it is possible to infer {P \/P′} and {Q \/ Q′} to be true too. A more specific for-

mula for the example query is given in Figure 4.14. From the above specific

57

{ {,,,mbox,} DELETE {Q} , {,.mailrc,,} DELETE {Q′}

{,,,mbox, \/ ,.mailrc,,} DELETE { Q \/ Q′} } : User

Figure 4.14. Application of the OR rule.

inference rule we deduce that, if the preconditionsmboxand .mailrc are applicable

to the DELETE action frame, then these preconditions can be ORed together and

applied at once. This will save using the same frame twice.It is also possible to

think of the OR rule as processing many objects through one action. This is another

Many Object-Single Action definition.

4.11. The distinction of AND and OR

The AND and OR rules are distinct from the three rules described earlier. The

AND and OR rules are used to add information together for a given frame. They do

not derive new information to be placed in a frame.There is a difference between

AND and OR rules in that the AND rule is defined because it isnecessary, whereas

the OR rule is defined forefficiencyreasons. Thefunction of the AND rule is to add

necessary constraints on objects together for a frame. The OR rule is used to OR

object constraints together in one frame which could have been processed separately

by two runs of the same frame. This could be done with the rule of composition.By

this we mean that the OR rule could be removed so that some parallel rule of com-

position executes an action or command over many objects concurrently. This could

not be done with the AND rule as some frames such as APPENDneedsource and

58

destination files to exist before execution.

In some operating systems it doesn’t matter if /usr/paul/post or mbox don’t

exist before executing an APPEND command. However, in some systems it does

matter, and as was said before, we are taking a general approach to operating system

design.

4.12. The No-consequence rule

Trivially, the No-consequence rule is a ‘‘do-nothing’’ statement and is defined

by Figure 4.15.

{ {P} A {P}}

Figure 4.15. Definition of the no-consequence rule.

The rule shows us that after executing an action A some preconditions do not

change at all. A command like datein the UNIX operating system could be consid-

ered under a no-consequence rule because it does not really change the states of files

and directories in the system.Any no-consequence rule can be executed a number

of times throughout any command environment without having any effect on file or

directory objects within that command environment. We must be careful while

applying the no-consequence rule as certain objects such as the terminal screen will

be changed with application of commands such as ‘‘date’’.

It is important to realize that the no-consequence rule is truly an element of

Transfer Semantics. The no-consequence rule does transfer objects from one state to

59

another where the new state is the same as the old one.Therefore, when PlanCon

sees certain no-consequence commands it just applies the no-consequence rule and

does not change objects like files and directories in the precondition set although the

postcondition set may be changed.It turns out that there are commands in some

operating systems which can be concatenated in a multi-command environment to

simulate the no-consequence rule. For example, commands can have their effects

reversed if they are followed by certain other commands.

In summary we have defined six rules of inference which can describe opera-

tions on action frames. The rule of composition is the only rule which involves mul-

tiple actions. All the other rules relate to single actions. Some may argue that the

first and second rules of consequence are not really inference rules at all.Certainly

some of the other rulesare inference rules.It is our belief that objects such asplain

filesshould not be stored as plain files but as types of file.Such information can be

located in an object hierarchy and that process is called inferencing.

In building the understander we try to store as little information as possible and

derive new information when it is needed. That is ourminimum-storage principle.

It may be the case that some combination of the six inference rules is needed in

order to build domain-specific representations to match a user query. The order of

application of combinations of inference rules may be important. This will need to

be investigated.

4.13. A justification of the minimal-storage principle

We hope to include a learning component calledLeConin the understander at a

later stage. This component will be similar to the component called UTeacher in the

UC system (Wilensky et al., 1986). The component would allow any user to update

knowledge in the understander through a natural language interface. Knowledge that

60

could be updated includes adding new action frames or object frames or updating

existing ones. Inference rules could be updated or new ones added to the inference

database. We are not so naive as to believe that six is a magic inference number at

all. In any case for an update system it would be nice if all knowledge was kept in

the same place in the understander. Then, we must justify why we chose to have

three types of knowledge in different places which may hamper updating. That is,

why did we choose to separate out knowledge into object frames, action frames, and

inference rules?

We believe that it is easier to keep the static data representation (action frames)

small and use information from another static representation (object frames)

together with inference rules to expand the scope of action frames. The system will

become more efficient, as it is easier to match small frames containing localized

information, and infer on that local information, than to search through large frames.

We hav ecome to one major conclusion while developing this research. In general

we argue that [action-frames + object-hierarchy + inference-rules] is better than [

ACTION-FRAMES∗] or even [ACTION-FRAMES + object-hierarchy] for any

system.

4.14. Other work on representing inference

The action frames for Transfer Semantics are described as plans in much of the

literature (see Fikes & Nilsson, 1971; Carberry, 1983). Carberry(1983) describes

plans containing preconditions, partially ordered actions and effects. This is also a

good description of our action frames. The rule of composition for building multi-

command environments is similar to what Carberry callsglobal plan context. Each

individual command environment which may be used to construct a multi-command

∗ By using upper case characters we hope to emphasize that terms refer to action frames containing a
large number of conditions.

61

environment is what Carberry calls alocal plan context. Carberry describes her

work in the wider context of dialogue understanding and we hope to apply the rule

of composition in this area. Kautz & Allen (1986) have defined a structure for mod-

eling concurrent actions.

The UNIX Consultant (UC) program (Wilensky et al. 1984, 1986) has various

elements of inference embedded within it. The UC system is divided into various

components. Thecomponents called PAGAN (Plan And Goal ANalyzer) and

UCPlanner involve procedures closely related to what we talk about in this Chapter.

The PAGAN program hypothesizes the plans and goals under which some user is

operating. PAGANs knowledge representation involves planfors. These are rela-

tions between goals, and plans for achieving those goals. Each plan is a sequence of

steps. Therefore, plans in the PAGAN component can be compared to multi-com-

mand environments in OSCON where a number of command environments are con-

catenated to produce some effect. We differ with the UC approach on one issue as in

PlanCon goals and plans are generated dynamically. Each plan or command envi-

ronment is generated dynamically using rules of inference over action frames and

input text. Thatis exactly why we need the inference rules described above. Yet, in

PA GAN the steps of all plans are already stored statically in memory in a planfor

database.

UCPlanner has the function of determining a fact that the user would like to

know. The domain planner tries to determine how to accomplish a task, using

knowledge about UNIX and knowledge about the user’s likely goals. UCPlanner is

a knowledge based common-sense planner. The planner creates plans for the user’s

UNIX goals. A goal detector is used to detect various goals that are necessary to

complete in order to execute some user goal. Goals may be detected automatically.

For example, new goals may be detected during the projection of possible plans.

62

This will happen if the planner notices some plan would fail when some condition is

not satisfied. A new goal would be produced by the planner to satisfy the condition.

Other goals that may be detected include background goals such as access to files.

The goal detector finds goal conflicts such as deleting files which have protection.

Stored plans exist in the system and these are similar to the action frames from

Transfer Semantics.

In UCPlanner plans are selected and this involves two processes: (1) new plans

can be derived, and (2) a process of plan specification fills in each general plan with

more specific information.A process called projection is used to test whether a

given plan will execute successfully. This is a test for possible problems in the plan:

(1) conditions to be satisfied, and (2) possible goal conflicts to be resolved because

of the effects of that plan. This involves three processes. The planner contains

defaults to help in simulating some plan. These defaults may not be supplied by the

user. Defaults would be to assume such things as files being text unless otherwise

specified. Other processes include condition checking to ensure that plan conditions

are satisfied in the system, and new goal detection where effects may arise which are

not part of the user’s goals.

In PlanCon new plans are derived using the rules of inference and general

plans can be filled with more specific information from the object hierarchy. The

process called project in UCPlanner is similar to the command-environment genera-

tor mentioned above. We are in agreement with Wilensky et al. (1986, p. 50):

‘‘ However, to answer more interesting problems it is necessary to be able to build

new plans from existing plans. It would be impossible and undesirable to index an

appropriate plan for each of the possible queries that a user might have.’’ That is

exactly why we use inference rules in PlanCon.

63

The SINIX Consultant discussed by Kemke (1986) contains a rich knowledge

base similar to that Transfer Semantics.Like Transfer Semantics the SINIX knowl-

edge base consists of a taxonomical hierarchy of concepts. The leaves of the hierar-

chy correspond to SINIX objects or commands. Higher level concepts reflect more

general actions or objects.In Kemke (1987) we are told that a Plan Generator will

use a formal semantics of commands. Kemke says (p. 218), ‘‘The formal semantics

description should be able to be used by aPlan Generator in order to construct

‘‘ complex actions’’, i.e. plans, if the desired state or action specified in the user’s

question cannot be realized using a single command but, instead, through a

sequence of commands.’’ She talks of being able to describe the effects of com-

mands by using a set ofprimitive or basic actions. That is exactly what we hope

PlanCon does using the Rule of Composition.

The COUSIN system developed by Hayes (1982) and Hayes & Szekely (1983)

has interesting similarities to our work. COUSIN can provide dynamically gener-

ated, contextually sensitive explanations about the current state of user interaction

with the system. COUSIN only generates these dynamic help frames if the user

makes a request for help without giving the name of some static knowledge frame.

We can do this by using the rule of composition. That rule generates any command

environment by concatenating or interconnecting individual command environ-

ments. As COUSIN is a command-level interface, each stage of user interaction will

be executable, whereas with PlanCon command environments are representations

used by the system to understand user queries.They are representations of what

wouldhappen if the user executed certain commands.

Sandewall & Ronnquist (1986) define a representation for action structures

very similar to our own. Eachaction structure is defined in terms ofprecondition,

postconditionandprevail conditions. Prevail conditions must hold for the duration

64

of some action.An action structure (multi-command environment for us) is viewed

as a set of actions (single-command environment for us).Each action has a start

point and an end point. These would be the preconditions and postconditions in any

multi-command environment. They hav edone an interesting job on how to formal-

ize sequences of connected actions. This will be useful for doing parallel command

operations. Itis easy in UNIX to be doing one thing while numerous other pro-

cesses are going on. Such processes are called background or child processes.

Alterman (1986) describes an adaptive planner which takes advantage of the

details associated with specific plans. The planner still maintains the flexibility of a

planner that works from general plans. Alterman tells us, ‘‘A planner that has access

to general plans (alternatively abstract or high-level plans) is flexible because such

plans will apply to a large number of situations’’ (p. 65). That is exactly why we

have defined the rules of inference at a general level in the discussion above. Alter-

man makes a very important point that if we use a general planner then plans must

be recomputed for specific plans and if one uses a specific planner there is a wealth

of detail and there are problems with flexibility . His adaptive planner uses informa-

tion from both specific and general plans.

Alterman’s approach is different from our own. He believes that specific plans

should be stored and called up on demand. Then the specific plans can be tuned to

the particular situation or context at hand. However, we believe that is easier to com-

pute specific plans on demand rather than to store them.We do that because there

are so many specific plans that it is impossible to store them all, or even a good

enough set, to cover enough situations.Again, this is ourminimal-storage principle.

Alterman defines a process of abstraction which removes details form a plan. This is

similar to our process of weakening postconditions for some plan. He also describes

specialization as moving from a more abstract plan towards more specific examples.

65

This is similar to strengthening preconditions in PlanCon. Adaptive planning is in

effect the application of the first and second rules of consequence and the AND and

OR rules. The first rule of consequence defines specialization while the second rule

defines abstraction.However in PlanCon we define preconditions to be weak and

postconditions to be strong.We gav egood arguments for doing that. This useful

distinction is not made by Alterman.

An interesting discussion on hierarchical representations of causal knowledge

is found in Gabrielan & Stickney (1987). They define a formalism for hierarchical

causal models which provides explicit representations for time and probabilities.A

system is defined in terms of a set of states and transitions among those states. A

state is considered to be a complete or partial description of the system at a moment

in time. Transitions define how changes in the system occur. An explicit representa-

tion of a transition or action can be defined explicitly in terms of start states (precon-

ditions) and end states (postconditions).They introduce a number of formal defini-

tions to construct a precise formulation of a hierarchical causal model.In their for-

mulation more than one state can be active at any one time and many parallel transi-

tions can occur simultaneously and asynchronously. This is all related to the com-

mand environment generator.

Minsky (1975) also notes that we need some method of applying transforma-

tions between frames in a system. He says, “I do not understand the limitations of

what can be done by simple processes working on frames. One could surely invent

some “inference-frame technique” that could be used to rearrange terminals of other

frames so as to simulate deductive logic” (p. 229). We use the rule of composition

to build new structures from action frames already existing in the system. Our infer-

ence rules are similar to what Minsky (1975) calls “formal operations”. He defines

formal operations as, “...processes that can examine and criticize our earlier

66

representations (be they frame-like or whatever).’’ (p. 230)

Elements of the rule of consequence have also been described as ‘‘enable-

ment’’ by Pollack (1986). Her example demonstrates that in a mail system some

user may type HEADER 15 and thisenablesthegenerationof deleting the fifteenth

message by typing ‘‘DEL .’’ . This happens because typing HEADER 15 makes

message fifteen the current message to which ‘‘.’’ r efers. Pollack only considers

what she callssimple planswhich are a restricted subset of plans. Simple plans are

those plans where the agent believes that all the actions in a plan play a role by gen-

erating another action.That is, the plan includes no actions that the user believes

are related to each other by enablement.Simple plans can easily be generated by

PlanCon.

4.15. Inference, parallelism and beliefs

In this chapter we have described inference rules which will solve some of the

problems in Transfer Semantics.We showed that a knowledge representation for

operating systems called Transfer Semantics will not work without inference.This

was done by providing natural language forms that could not be processed by the

natural language understander. The next step was to describe some general rules of

inference that could be applied to action frames so that the frames would work for

each of the these forms. Those inference rules were called (1) The First Rule of

Consequence, (2) The Second Rule of Consequence, and (3) The Rule of Composi-

tion. We defined three more rules called the AND, OR and No-consequence rules.

The AND and OR rules provide necessary and efficiency requirements for frames.

The no-consequence rule allows us to specify commands which will have no real

effect on objects in the command environments. Thelanguage of each inference

rule has been borrowed from axiomatic semantics. This semantics has been used to

67

provide formal descriptions of programming languages.We chose that semantics

because of its clarity and coverage.

It is a significant feature of Transfer Semantics that there exists a number of

inference rules enabling manipulation of action frames. Therefore, by using the

object frame hierarchy and these inference rules an action frame can circumscribe a

large quantity of domain-specific relations. We hav eshown the usefulness of infer-

ence rules of consequence and composition.The consequence rules enable the sys-

tem to infer more detailed or less specific objects from an object hierarchy. Embed-

ded queries involving many concepts can be interpreted effectively on application of

the composition rule.

It is concluded that the six general rules of inference are necessary in expand-

ing the scope of Transfer Semantics.Remember, the problem with Transfer Seman-

tics is that only preferred conditions are specified in frames. The inference rules

allow the system to infer stronger and weaker forms of preferred objects that are not

represented in frames.However, we hav enot tackled the problem of the ability of

people to ask questions about actions running in parallel. The system needs some

understanding of parallelism. This will be discussed in Chapter 5.

In this Chapter we have not worried about problems of the distinction between

what the user and system believes. That distinction is discussed by Pollack (1986) in

a paper on plan inference. She proposes that models of plan inference in conversa-

tion must include this distinction. If this does not happen plan inference will fail as

will the communication that it is meant to support. Pollack has implemented a plan

inference model in SPIRIT, which is a small demonstration system that answers

questions about computer mail. She makes a neat distinction betweenact-typesand

actions. Act-types are types of actions and correspond to what we call action

frames. Actionscorrespond to specific actions to achieve some act-type. For

68

example,cat andmoreare actions specified in our PRINT frame where the frame

itself can be thought of as an act-type.Wilks & Ballim (1987) have proposed a first

implementation of a ‘‘belief engine’’ calledViewGenthat contains heuristics for the

default ascription of belief. We hope to include an instantiation of this belief engine

within the understander to model the interaction of system and user planning on the

basis of differing beliefs and plans.

Chapter 5: Planning in parallel

In Chapter 4 we talked about a plan generator called PlanCon which is used in

understanding plans appearing in user queries. An important inference rule was

defined to take care of many action queries. That rule was called the rule of compo-

sition. In effect the rule acts as a plan generator which concatenates actions together

in various ways. Queries like, ‘‘How do I nroff a file and then print it on the Ima-

gen?’’ are understood using the plan generator. Although a general rule of composi-

tion was defined, there are many different ways it can be used. This is not surprising

as this rule is very significant in any system. In Chapter 4 the rule of composition

dealt with sequential action sets.However, when people ask questions about operat-

ing systems they mention the execution of parallel actions. Commands running in

parallel in multi-tasking operating systems such as UNIX can be formalized with

some new rules. Let’s recap on the Rule of Composition and continue to define

some new rules.

5.1. A recap on the rule of composition

Sometimes people ask questions about operating systems where more than one

action is mentioned. For example, a user may ask, ‘‘How do I detect misspellings in

a file and more them?’’ Here, the user has mentioned two actions, one fordetecting-

spellingsand the other forprinting them. We defined a rule of composition which

prevents the frame selection mechanism from selecting between two different

frames where it should have selected both.The general form for the rule of compo-

sition is as shown below in Figure 5.1.

69

70

{ {P} A1 {Q} , {Q} A2 {R}

{P} [A1 < A2] {R} } : U

Figure 5.1. A recap on the definition of composition.

This general formula states that if {P}A1 {Q} is true, and {Q} A2 {R} is also

true, then we can infer {P} [A1 < A2] { R} to be true, too. In effect, this rule speci-

fies that the postcondition set found by applying a number of actions in sequence

will be the postcondition set derived by applying the postconditions of any action in

the sequence as preconditions to a subsequent action.A more specific formula for

the query, ‘‘How do I print a listing of system users on the laser printer?’’ i s shown

in Figure 5.2.

{ {P} WHO {Q} , {Q} PRINT {R}

{P} [WHO < PRINT] {R} } : User

Figure 5.2. Applying the definition of composition.

This formula tells us that if the postcondition of the action frame WHO is

applied as the precondition to PRINT then it is inferred that the postcondition of

PRINT is the postcondition of executing both actions. In this case we had two

71

actions to deal with. Sometimes there may be three or more actions mentioned in a

user query.

When more than two actions are mentioned in a query we must recursively

apply the rule of composition. Say for example, we have the query, ‘‘How do I

delete a listing of my directory from the printer queue?’’ Queries like this do not

appear often, though we should cater for them. There are three actions involved

here,deleting, listing andprinting. The object or data being manipulated is a direc-

tory. Initially the listing action is applied to the directory, then printing, then delet-

ing-from-printer. Again the theory of embedding is used to describe this sequence of

commands. The embedding set for this query is[(directory) LIST < PRINT <

REMOVE]. List is embedded inside print and print is embedded inside delete. They

operate on directory. Figure 5.3 represents the operation of listing and printing on a

directory.

{ {,,directory,,} LIST {Q} , {Q} PRINT {R}

{,,directory,} [LIST < PRINT] {R} } : User

Figure 5.3. Applying composition to LISTING and PRINTING.

The above rule of inference specifies the use of the actions LIST and PRINT

over a directory file. The REMOVE command must still be applied to achieve the

complete effect of the sequence [{P} LIST {Q} PRINT {R} REMOVE {S}]. We

show this in Figure 5.4.

72

{ {P} PRINT {Q} , {Q} REMOVE {R}

{P} [PRINT < REMOVE]{R} } : User

Figure 5.4. Applying composition to PRINT and REMOVE.

Figure 5.4. shows that the postcondition {Q} from executing PRINT is passed

as a precondition to REMOVE which gives the postcondition R. We note here that

PlanCon must derive the correct postcondition {R}, from the REMOVE action

frame. Therule of composition may be applied any number of times to run a whole

sequence of commands.

5.2. Piping as composition

The UNIX operating system allows users topipecommands together where the

output of one command becomes the input of another. A string of commands

hooked together is called apipeline. For example the pipeline command,Who | wc

-l, will answer the user query, ‘‘How do I find out how many people are logged in?’’

Who is a command which produces a list of users logged in, andwc (word count)

with the -l option counts the number of lines in this list, which has one line for each

user. Piped commands or pipelines can be represented by the Rule of Composition

(ROC). Thequery, ‘‘How do I find out how many people are logged in?’’ can be

represented by Figure 5.5.

It turns out that WHO is a command which does not have any required precon-

ditions but produces a postcondition {Q} which is a list of users logged in.There

73

{ {true} WHO {Q} , {Q} WORD-COUNT {R}

{true} [WHO < WORD-COUNT]{R} } : User

Figure 5.5. Applying composition to WHO and WORD-COUNT.

are no required preconditions because there is always at least one person logged in

— the user himself. This is a good precondition to word-count which produces the

postcondition {R}.

To demonstrate the powerful utility of pipelining we will show how four com-

mands could be concatenated together. For example, the pipeline command below

will produce on the laser printer a long listing of all theusr files whose name con-

tainspaul:

ls -l /usr | grep paul | sort +3nr | lpr

The files will be sorted in reverse numerical order by the fourth field of the list and

printed on the laser printer. All this can be represented by the ROC. In fact, we show

the quadruple concatenation below.

The three command environments in Figure 5.6 show what happens when the

four commands LIST, GREP, SORT and PRINT are used together in a pipeline. The

ROC must be applied three times to derive final postcondition set {T} from initial

postcondition set {/usr}. We hav ea representation of the execution for {/usr} [LIST

< GREP < SORT < PRINT] {T}.

74

{ {,/usr,} LIST {Q} , {Q} GREP {R}

{,/usr,} [LIST < GREP]{R} } : User

{ {Q} GREP {R} , {R} SORT {S}

{Q} [GREP < SORT]{S} } : User

{ {R} SORT {S} , {S} PRINT {T}

{R} [SORT < PRINT] {T} } : User

Figure 5.6. Computing quadruple composition.

Except for the first and last commands in a sequence all commands are called

filters. So, in the above example GREP and SORT are filters. By no accident we

note that PRINT typically occurs last in any command environment, and LIST typi-

cally occurs first. This happens because the frame for LIST contains a command

called ls which does not accept standard input∗ . Also, PRINT contains the com-

mandlpr which does not write to standard output but to the laser printer.

5.3. Redirection as composition

Redirection of standard input and standard output is common in the UNIX

operating system. A user may ask, ‘‘How do I list my files and put them in a file

called paul’s-file?’’ This can be done by using the commandls -l > paul’s-file, and

the>∗ operator redirects output to paul’s-file rather than the screen. The ROC to do

∗ ‘‘ Standard input’’ is a UNIX term referring to the source where input to commands comes from. The
source is defined, by default, to be from the terminal although this default can be changed.

∗ The redirection operator, ‘‘>’’ i s bolded so as not to be confused with the embedding operator, ‘‘<’’.

75

this is shown in Figure 5.7.

{ {,files,,} LIST {Q} , {Q} > {R}

{,files,,} [LIST < >] {R} } : User

Figure 5.7. Applying composition to redirection of input.

The symbol> although not really a command acts as one, and transfers stan-

dard output to another location.It is also possible to redirect standard input.For

example, in the query, ‘‘How do I mail a file to Afzal?’’ the command,mail

afzal@nmsu < filewill do the job. Standard input is redirected to come from file

rather than the terminal. The ROC also deals with redirection of standard input and

this is shown in Figure 5.8.

{ {file} < {Q} , {Q} MAIL {R}

{file} [< < MAIL] {R} } : User

Figure 5.8. Applying composition to redirection of output.

In Figure 5.8 we show how redirected standard input is passed to mail which

produces a postcondition {R}. It seems that the ROC is capable of doing many

types of sequencing and is very wide ranging. However, there are some operations

which the ROC does not cater for yet.

76

5.4. Limitations of the rule of composition

The rule of composition is extensive yet will not handle the query, ‘‘How do I

find a job number and then kill the job?’’ I n this case the user needs to find a job

number (one action or command) and then kill it (another action or command).

However, the output of one command is not passed as the input to the other. The

difference with this type of query is that the user has specified a concatenation of

commands that are not usually concatenated together. The KILL frame just needs

some of the information from the FINDING-JOB-NUMBERS frame.

We need to define a new inference rule, involving some type of composition,

i.e., a variation on the rule of composition.The rule will specify sifting of informa-

tion from one action to be passed to another. There will surely be many ways of

sifting information from commands. One can easily see now that it would certainly

be naive to suspect that six general rules of inference was enough. Our next job is to

locate and specify new and interesting rules of inference.

5.5. A selective rule of composition

Say some user asks the question, ‘‘How do I find a process and kill it?’’ Here

we have two actions mentioned in the input query, finding-a-processandkilling-a-

process. As the ROC stands it would compute something like Figure 5.9.

Of course this is incorrect as it isn’t the complete output of FIND-PROCESS

that is passed to kill, but a selective piece which is the job number. Otherwise the

rule would specify killingall processes. We must define the selection or filtering of

output from certain commands which is used as input to other commands or actions.

We define a new rule, shown in Figure 5.10, called theselective rule of composition

(ROC1).

77

{ {P} FIND-PROCESS {Q} , {Q} KILL {R}

{P} [FIND-PROCESS < KILL]{R} } : User

Figure 5.9. Applying composition to FIND-PROCESS and KILL.

{ {P} A 1 {Q} , {Q} ⊂ A2 {R}

{P} [A1 <⊂ A2] {R} } : U

Figure 5.10. Definition of the selective rule of composition.

The general formula states that if {P}A1 {Q} is true, and{Q}⊂ A2 {R} is also

true then we can infer {P} [A1 < ⊂ A2] { R} to be true too.The rule shows that it is

only a subset of {Q} fromA1 that is passed to the second actionA2.

5.6. A composition rule for parallelism

Another problem occurs when a user wishes to execute background processes

in some multi-tasking operating system. Each rule of composition defined so far has

been purely sequential. The output of each command, or a subset of that is passed to

the next command in the sequence.

Say some user asks the query, ‘‘How do I print a file in the background and edit

a file in the foreground?’’ In that case the user is talking about running two actions

78

in parallel. The rule of composition does not cater for this. We define a new rule of

composition called theparallel rule of composition(ROC2). This is shown in Figure

5.11.

{ {P} A1
{Q}, {P′} A2

{Q′}

{P \/ P′} [A1 < A2] { Q \/ Q′} } : U

Figure 5.11. Definition of the parallel rule of composition.

In Figure 5.11 we show that the two actions A1 and A2 run in parallel and the

preconditions for each action are ORed together because they both exist. This is

also true for the postconditions {Q}. This rule of composition is very like the OR

rule described in Chapter 4. Of course, the difference is that the OR rule is a single

action rule, whereasROC2 is a double action rule, i.e.,ROC2 includesA1 and A2,

whereas the OR rule only has A. Of course, if we have A1 equal toA2 in Figure 5.11

thenROC2 translates to Figure 4.13 (OR rule).

Any command environment representingROC2 will have a sub environment

running in parallel to the master environment. It may also be necessary to specify

communication between data elements or objects in parallel executions although

this is doubtful. For example, in UNIX it is not advisable to alter files or other

objects in both background and foreground processes.We now hav ethree rules of

composition:ROC0, ROC1, and ROC2. Howev er, that is not enough.

79

5.7. A composition rule for forking

There is another concept for which we must define a rule of composition.

Some user may wish to pass the output of a command to more than one location at

one time. This is calledforking and involves both parallelism and sequential opera-

tions. For example, a user may want to know, ‘‘How do I list a file both on the

screen and into a directory file?’’ This can be done by, ls | tee dirfile. The command

tee places the output of list in two locations,dirfile and thestandard output. We

need a new rule to handle forking and it is called thefork rule of composition

(ROC3). This rule is shown in Figure 5.12.

{ {P} A {Q} , {P} A ϒ {R}

{P} [A < A ϒ] {Q \/ R}} : U

Figure 5.12. Definition of the fork rule of composition.

This rule shows that executing any fork command in a sequence will cause

forking of the preconditions {P} to give the postcondition in two locations {Q} and

{R}.

5.8. A composition hierarchy

We hav enow defined four rules of composition. The first calledROC0 was a

general rule specifying no detail as to how commands were linked together. Next,

we defined the selective rule of composition calledROC1 which passes selective

pieces of postconditions from one command too another. This was followed by the

80

parallel rule of composition calledROC2 which allowed the composition language

to describe actions running in parallel.We further extended the depth of composi-

tion by defining the fork rule of composition (ROC3). We show a hierarchy of com-

position in Figure 5.13.

ROC (Fork)

ROC (Selective)

3

ROC (General)0

1 ROC (Parallel) 2

Figure 5.13. A graphic hierarchy of composition.

ROC1, 2,3 are an extension of the depth of composition rather than its breadth.

We hav edefined each rule as there needs to be a definition of the specifictypes of

composition in the system somewhere, and that is brought out by defining clearly

more specific instances of composition.It is possible to prove that ROC1, 2,3 are all

collapsible toROC0 under certain conditions. That is good because it shows that

ROC0 has in its definition the inherent elements of composition.It is possible to

demonstrate subsumption byROC0 of the different rules.

81

First of all we show that ROC2 subsumesROC3. Remember,ROC2 described

parallel composition andROC3 described forked composition. Taking Figure 5.11

denoting (ROC2) we substitute {P} for {P′} everywhere in the equation. We get

Figure 5.14.Now, {P \/ P} collapses to {P} and we get the fork rule of composition

ROC3.

{ {P} A1
{Q}, {P} A2

{Q′}

{P \/ P} [A1 < A2] { Q \/ Q′} } : U

Figure 5.14. Equivalence of parallel and fork composition.

It is also possible to show the parallel rule of composition (ROC2) as a special

case of the general rule (ROC0). If we take Figure 5.11 and let {P′} be {Q} every-

where in the equation then we find Figure 5.15. In effect, this means that the precon-

dition of one of the parallel actions (A1
) is the same as the postcondition for the

other action (A1
). In Figure 5.15 {P \/ Q} can decompose to {P} and {Q \/ Q′} can

decompose to {Q′}. This would happen when two actions run in parallel and only

one of the preconditions exists ({P}) and only one of the postconditions exists (Q′).

We get the general rule of composition as shown in Figure 5.1.

Now, we hav eshown thatROC3 is a special case ofROC2 andROC2 is a spe-

cial case ofROC0. It follows thatROC3 can also be a special case ofROC0. There-

fore we have shown that for certain casesROC2, 3 are equivalent to ROC0. Trivially,

ROC1 translates toROC0 when ⊂ is ⊆ . ThenQ⊆ could beQ= i.e., {Q}⊆ would be

82

{ {P} A1
{Q}, {Q} A2

{Q′}

{P \/ Q} [A1 < A2] { Q \/ Q′} } : U

Figure 5.15. Equivalence of parallel and general composition.

{Q}. The formula forROC1 then collapses to Figure 5.16. Figure 5.16 is equivalent

to Figure 5.1 (ROC0).

{ {P} A 1 {Q} , {Q} A2 {R}

{P} [A1 < A2] {R} } : U

Figure 5.16. Equivalence of selective and general composition.

We must emphasize that the various rules of composition are a declarative rep-

resentation of procedures in the system which manipulate action frames.In an

inference module it would be necessary to also define a hierarchy including each

ROC. The next question that must be answered is, how does the system know

which rule to apply? The general rule of composition would be tried first, then

probably selection, and then the parallel rules. That is just a conjecture and empiri-

cal studies may prove us wrong.

83

5.9. Other work on plan hierarchies and parallel planning

We hav enow defined a hierarchy of inference rules for the rule of composition

and there are also have five other rules of inference. The hierarchy allows PlanCon

to understand complex plans and goals in user queries. Hierarchies of component

goals and actions for domain-dependent plans have been used by Carberry (1983).

Litman and Allen (1984) and Pelavin and Allen (1987) have also developed a model

based on a hierarchy of plans and metaplans.

Litman and Allen (1984) discuss the modeling of plans of speakers in task

domains. They dev elop a model based on a hierarchy of plans and metaplans that

accounts for clarification subdialogues and topic change. They consider plans as a

network of actions and states connected by links indicating causality and subpart

relations. Each plan has aheader, which names the plan andparametersthat exist in

the header. Plans also have a set of constraints, which are assertions about the plan

and its terms and parameters. Plans may also containprerequisites(preconditions),

effects(postconditions) anddecomposition(sequences of actions).They giv e an

interesting account of how plans may be linked together in a plan hierarchy which is

useful for understanding sentences input to a contextual understander. They use a

focus mechanism to direct the planner through a hierarchy of plans. It is our intent

to add a focus mechanism to the system at a later date. The Litman and Allen plan-

ner is intended to be a more general planner for general language understanding

whereas PlanCon is intended to be characterizing the specific operations that people

can do with actions, and in particular how people can compose various actions.

Pelalvin and Allen (1987) describe a model for concurrent actions with tempo-

ral extent. They describe a semantic structure which provides a basis for defining a

semantic structure for describing interactions between actions, both concurrent and

sequential, and for composing simple actions to form complex ones. It also treats

84

actions that are influenced by properties that exist and events that occur during the

time that the action is to be executed. Onetheme of their approach is to capture

what is happening while an event is occurring. They directly treat events affected by

conditions that hold during execution. For example, the event of ‘‘sailing across the

lake’’ is described which can only occur if the wind is blowing while the sailing is

occurring. Compositionis defined in terms of a formal logic notation.

Sandewall and Ronquist (1986) consider structures for actions which are par-

tially ordered for time and which may occur in parallel. They show how concurrent

actions can be dealt with by using a petri-net approach. They relate their work to

theories and languages of concurrent programming.Again, this work relates to the

function of PlanCon.

Chapter 6: Meaning representations

So far we have been discussing a knowledge representation for operating sys-

tems, and how this representation may be used to understand natural language

queries. However, we hav e not discussed the meaning representation that English

queries are parsed into, or how this meaning representation chooses the correct

frames. Thejob of the parsing process is to parse natural language input into a good

meaning representation. One of the first questions we must ask ourselves is what

type of queries do people ask.

6.1. The nature of queries about operating systems

A good way to understand the requirements of a natural language understander

for operating systems is to build a good theory of the way people use English to ask

questions about these systems.When people ask questions about the UNIX operat-

ing system they often refer to a number of interrelated actions. Numerous objects

are associated with these actions.For example people ask questions like, ‘‘How do I

print a file on the Xerox with pageheaders?’’, or ‘‘How do I spell a file and then have

the mistakes printed on the Imagen?’’. The former query has one action, that of

printing and the latter has two actions that offinding mistakesand that ofprinting-

on-Imagens. Of course, some queries have no actions at all. These are queries like,

‘‘ What is a file?’’ or ‘ ‘What is a pipe?’’ Such queries are static and involve answers

which are descriptive rather than dynamic.

Therefore, operating system queries are about the dynamics of the system, i.e.,

queries about actions such as printing, removing or deleting; or about the statics of

the system, i.e., queries about static objects such as files, file-structure, pipes, and so

85

86

on. In Section 4.7 we called the formerdynamic queriesand the latterconcept

description queries.

If dynamic queries did not exist, then it would be easier to build an operating

system consultant. All we would have to do is to store a manual about operating

systems in OSCON, and if a person asked a question about say, files the system

would just print out any information about files.However, people ask questions

like, ‘‘How do I print a file on the Imagen with pageheaders?’’ which involve actions

such asprint, and constraints on those actions such asfile and Imagen and

pageheaders. Therefore, it is necessary to develop some mechanism whereby mean-

ing representations for multiple action queries can be integrated in a sensible man-

ner. That is what this chapter is about.

6.2. A tutorial on the theory of embedding

We can assume that any query about operating systems includes a number of

actions (which may be zero) and objects manipulated by those actions. Any meaning

representation of a query must contain in some semantic form the actions and

objects and how these are related together. Concept description queries have no

actions at all. Dynamic queries contain one or more actions. Dynamic queries with

one action are represented without much difficulty. In the meaning representation

we can just include that action and any objects related to it.

Dynamic queries containing more than one action are more difficult to deal

with. Thereneeds to be some way of relating actions together. Let’s look at some

more examples. In ‘‘How do I send a troff fi le to the Imagen?’’ there are two actions,

troffing-a-fileand thensending-it-to-the-Imagen. In the query, ‘‘How do I remove a

file printing on the Imagen?’’ there are also two actions. Those areprinting-a-file

and thenremoving-it. What do we notice about the actions in each query? Each

87

action is related temporally to other actions in the query. One action is executed

before another and the ordering is important. Certain actions operate on objects and

change their states. Other actions come along later in time and transfer object states

into new ones. We think of natural language queries in terms of actions processing

objects in time. A good way to represent such actions will be to keep that notion of

time as it is important. Actions can be sequenced or embedded within one another.

Actions are black boxes which take objects as input and produce new objects as out-

put. Each set of actions is looked on as being an embedded set.

The theory of embedding seems to be a good one.To understand queries about

operating systems we need to be able to recognize actions and objects in the input.

We need to represent the meaning of words if the system is to determine whether

words in input sentences are actions or objects.A mechanism should match words

in the input to their meaning representations. That mechanism should determine

whether words are actions or objects. Then there must be some processor which uni-

fies or concatenates word representations together to build complete meaning repre-

sentations of whole queries. Such complete meaning representations will capture the

temporal relations between various actions and their objects.

6.3. The components of a meaning representation

To determine whether words in the input are objects or actions we need to rep-

resent the meaning of words in the system. Therefore we need adictionaryof words

which tells us the type of each word. So,print will be represented as an action and

so will deleteandmove. Files anddirectorieswill be typed as objects. We build a

dictionary with entries like (file location object)and(print action), (directory loca-

tion object)and(user actor). Notice thatfile anddirectoryare also marked as being

specific types of objects i.e., locations.

88

The next problem we must worry about is how to define allowable operations

of actions. We should build some structures which represent various actions and

how they relate to objects. Such structures would recognize incorrect operations of

actions. Adatabase of patterns is defined to represent legal action operations. Pat-

terns are semantic templates for expected legal actions. We construct a pattern

database with entries like (observe-obj <person> <object>). This entry tells us that

a leg al sentence could include actors observing objects. Thus the query, ‘‘How do I

see a file?’’ would match this pattern. We can call the patternsaction templates.

To build meaning representations for sentences, we need to be able to link

action templates together by some means.To do that there needs to be some precise

definition of what each action template means. Each action template should have an

associated meaning structure.Such meaning structures should include actions,

objects related to actions, types of those objects, and actors. We call such represen-

tationsdeep case structuresand one is shown in Figure 6.1.

(obs e rve - ob j ((ac t or _ ∗)
(de s c r i p t i on _))

((ob j e c t _)
(de s c r i p t i on _))

((l oca t i on _)
(de s c r i p t i on _))

(f rame s pr i n t l i s t))

Figure 6.1. Case structure for observing objects.

∗ We use the symbol ‘‘_’’ to denote an unfilled slot in a case frame.

89

Figure 6.1 is a case structure which tells us that to observe an object there can

be an observer, an object of observation, and a location for the observation to occur.

Each entity may have somedescriptiontagged to it. The case structure also refer-

ences two frames. Theseare the action frames in the system (discussed in Section

3.4.) thatrepresent domain specific knowledge about operating systems.For this

example the frames are print and list which specify printing-objects and listing-

objects respectively. Already we note that domain specific information will be

selected if this case structure is referenced.

6.4. Embedded action representations

As already mentioned, user queries about operating system commands contain

embeddings of actions. It should be possible to create representations of nested or

embedded deep case structures to describe interrelated actions.We call such repre-

sentations embedded action representations (EREPs).

Operating system commands are related to each other in specific ways. When

users ask questions about such actions they usually get these relations correct.

Therefore, if we build EREPs from user queries, the EREPs should be a good

approximation of the relations. This means that domain-specific structures produced

from EREPs should often be correct. In fact, if the domain-specific structures are not

correct the input query also contains relations which are incorrect.It is possible to

build EREPs from queries about operating systems and to translate them into

domain-specific representations.

Examples of typical actions which can occur in EREPs are printing, listing and

deleting. People can ask questions about UNIX such as, ‘‘How do I print a listing of

my directory?’’, or ‘‘I need to print a file.’’ I n the former example we build an EREP

where the conceptlisting is embedded inside the conceptprint and in the latter case

90

print is embedded insideneed. These are examples of double embedding. Yet, triple

embeddings result from queries such as, ‘‘How do I delete a listing of my directory,

printing on the Imagen?’’ We will now go on to show how EREPs can be used to

understand natural language queries.

6.5. Null embedded queries ({Ai } i=0,1)

If a query involves no actions, or just one action, then there will be no embed-

ding at all. If we useAi to represent the number of actions in a query then null

embedded queries are denoted by{Ai } i=0,1. Concept description queries are simple

questions about objects with no presence of operating system actions.Therefore,

concept description queries will always exhibit null embedding. It is also interesting

to note that concept description queries do not include actors. The reason for that, of

course, is that there is nothing for them to act upon.A typical example of a concept

description query is the sentence, ‘‘What is read protection?’’. The action template

(be <object>)is used in deciphering this query. Protectionis defined under the cat-

egory object from its dictionary entry i.e.,(protection object). The case structure for

thebeaction template is instantiated to give the structure in Figure 6.2.

(be ((ob j e c t PRO TECT ION∗)
(de s c r i p t i on READ))

(f rame s pr o t e c t i on))

Figure 6.2. Instantiated case structure for ‘be’.

91

Dynamic English queries illustrate null embedding when only one action is

mentioned. For example, the query ‘‘How do I delete a file?’’ has a representation

with no embedded actions at all. The query is parsed into the structure shown in Fig-

ure 6.3.

(de l e t e - ob j (ac t or USER)
((ob j e c t FILE)

(de s c r i p t i on quan t i t y ONE))
(f rame s remo ve))

Figure 6.3. Instantiated case structure for ‘delete-obj’.

6.6. Positively embedded queries ({Ai } i≥2)

There are many types of embedding present in meaning representations result-

ing from dynamic queries. We hav ealready seen that dynamic queries exhibit null

embedding. However they also exhibit positive embedding which means that the

query includes more than one action.We call queries with two or more actions pos-

itively embedded queries and they are denoted by{Ai } i≥2. Such queries have at least

one positive embedding of one action inside another. Also, we have discovered that

there are many types of positive embedding and there are many different ways of

recognizing and processing these.

∗ In the following case structure diagrams capitalized items indicate values filled in from dictionary
entries.

92

6.6.1. Explicit embedding

Explicit embedding occurs in representations for queries involving two or more

actions. For example, the meaning representation for the query ‘‘How do I print a

listing of my directory?’’, has the concept of listing embedded inside the concept of

printing. In processing this query, an observe-patcase structure is instantiated to

give Figure 6.4. An observe-patcase structure is selected because the system recog-

nizes that the directory was first listed and then printed. The user wishes to observe

an object which was already observed.

(obs e rve - pa t (ac t or USER)
(case (observe-obj (actor _)

((object DIRECTORY)
(description quantity ONE))

(frames print list)))
(f rame s pr i n t l i s t))

Figure 6.4. Meaning representation exhibiting explicit embedding.

Figure 6.4 shows that deep case representation for listing is nested inside the

representation for printing. The inner case structure is filled out first, and contains

directory as an object, because the actor is asking about listing directories.The

actor is not filled in yet as the action template for observing an object does not find

an actor in the phrase,...listing of my directory. The actor slot in the outer case rep-

resentation is instantiated to be USER. This was found from,How do I print..

where the actor was mentioned.In Figure 6.4 we note that the actor slot in the inner

case structure is not instantiated.However, this information would be determined

93

from the outer case structure and promoted inwards.

6.6.2. Implicit embedding

Some word in a user query may indicate implicitly the existence of another

action although this action is not mentioned directly. Say, for example, the system is

given the query, ‘‘How do I delete mail files?’’ Naively, the system would believe

that the user just wants to delete an object calledfile with descriptionmail. OSCON

would overlook the fact that another action (in this casemail) has created the object.

In deriving a meaning representation for this example a first step would be to con-

struct the structure in Figure 6.5.

(de l e t e - ob j (ac t or USER)
((ob j e c t FILE)

(de s c r i p t i on quan t i t y MOR E-THA N-ONE)
(de s c r i p t i on t yp e MA IL))

(f rame s remo ve))

Figure 6.5. Implicit embedding I.

Now, to solve the problem of not recognizing implicit embedding, each object

or action could be checked every time a representation is produced to establish

whether that object or action refers to another action template.In this case,mail is

recognized as being another action.Indeed,mail (a description on the objectfile)

references the action templatesendand its respective case structure. After some pro-

cessing the EREP in Figure 6.6 is computed.It is noted that in Figure 6.6 the con-

cept sendis embedded inside the conceptremove. The actor as user is expressed

94

(remov e (ac t or USER)
(case (send (actor USER)

((object FILE)
(description quantity MORE-THAN-ONE))

(frames MAIL)))
(f rame s remo ve))

Figure 6.6. Implicit embedding II.

inside each case structure. The send case structure represents the fact that the user

wishes to remove more than one file from the quantity descriptor.

6.6.3. Shadowed embedding

Often actions such aswantingor needingcan shadow the UNIX action which

is more important for the system to locate.We call this shadowed embedding

because a shadowing verb will enclose or shadow a verb about some UNIX action.

Although we are primarily concerned with locating UNIX concepts, we do realize

the importance of shadowing actions. Such actions are very useful in detecting the

goals of the user (see Wilensky et al. 1984, p. 589). The direction of reading the

input query is important because shadowing may occur while reading a sentence in

one direction although it does not in the other. Examples of shadowing exist in sen-

tences like ‘‘I would like to delete a file’’, and ‘‘I need to print a file’’. On reading

the latter query from left to rightneedshadowsprint. Howev er, if the query is read

right to left we get,A file, to print, I need? In this caseprint is not shadowed. Yet,

OSCON reads sentences left to right and therefore it needs to handle shadowing.

95

There are action templates for shadowing verbs in the pattern database such as, (s-

verb <person> <pattern>).For the query, ‘‘I need to print a file’’ the meaning repre-

sentation shown in Figure 6.7 is formed.

(s - ve rb (ne ed) (ac t or USER)
(ca s e (obs e rve - ob j (ac t or USER)

((ob j e c t FILE)
(de s c r i p t i on ONE))

(f rame s pr i n t l i s t))))

Figure 6.7. Shadowed embedding.

We note that the s-verb case structure has only one case slot other thanactor, called

case. The actual shadowing verb used in the sentence is tagged onto the EREP as it

may be useful in later processing. For example, such information would be useful

for discovering the intention of the user.

6.6.4. The intricacy of redundant embedding

Representations with redundant embedding are more a characteristic of the

parsing strategy than a characteristic of English.For example, while parsing the

query, ‘‘How do I use print to print a file?’’, the case structure for observing objects

would become embedded within itself. This happens because of implicit embedding

rules. In effect, (1) the user has mentioned printing files, and (2) the user has also

mentioned the operation for doing so i.e.,print. It would certainly be a mistake to

embed in examples such as this and OSCON must have strategies to recognize

redundant embedding. For this example the system produces the case structure in

96

Figure 6.8.

(s - ve rb (us e) (ac t or USER)
(ob j e c t PRINT)
(ca s e (obs e rve - pa t ob s e rve - ob j) (ac t or _) . . .)
(f rame s FRAM E (ob j e c t)))

Figure 6.8. Redundant embedding I.

From the previous example of implicit embedding we notice that the system would

find PRINT and believe there should be another embedding of theobserve-objcase

structure. Yet, this is wrong because the case structure for observing objects already

exists. There must be another rule which recognizes that implicit embedding is not

carried out if there seems to be redundancy. Therefore a counter rule will dictate that

PRINT does not call up another case structure.We must be careful in applying the

counter rule too.For example, ‘‘How do I print listed files?’’ i nv olves an embedding

of observe-objinsideobserve-obj. The inner case structure for listing is referenced

again by implicit embedding techniques and the problem here is that we really do

wish to embed. There seems no way out of all this.But, look again at the example

of redundant embedding.We notice that the query contains the shadowing verbuse

and that is what the system needs to look for while applying the counter rule. The

system will correctly represent the query, ‘‘How do I use print to print a file?’’ as

Figure 6.9. It is noted that in Figure 6.9 that objects have been promoted inwards

from the query. The clause ‘‘...to print a file’’ i nstantiates objects in the inner case

structure. Noframes are called forward by FRAME (object) because of the

97

(s - ve rb (us e) (ac t or USER)
(ob j e c t PRINT)

(case (observe-obj (actor USER)
((object FILE)
(description quantity ONE))

(frames print list))))
(f rame s NI L))

Figure 6.9. Redundant embedding II.

counteractive rule for redundancy. Note however, that in a query like ‘‘How do I use

print?’’ FRAME (object) would call forward these frames as they are not referenced

in any inner embedded case structure.

6.6.5. Negated embedding

Negation of concepts can arise in many queries. Thequery, ‘‘I can not delete

my file’’, is an example. Usually, neg ation will occur with triple embedding in

meaning representations. The meaning representation for the latter query is shown

in Figure 6.10. In Figure 6.10 the case representationremoveis embedded inside

not and not is embedded inside a can shadowing case structure. There are no frames

for the not case structure just like there are none for the s-verb can.

6.7. The selection of knowledge

As we can already see the case structures, and hence the EREPs, maintain ref-

erences to various action frames. It is the job of a frame selector to work out the

frame(s) most likely for the query in question. This is done by matching information

98

(s - ve rb (can) (ac t or USER)
(case (not (actor USER)

(ca s e (remov e (ac t or USER)
((ob j e c t FILE)

(de s c r i p t i on own e r USER)
(de s c r i p t i on quan t i t y ONE))

(f rame s remo ve)))))

Figure 6.10. Neg ated embedding.

from the meaning representations to the frames and finding the frame with the maxi-

mum number of matches.

Preferences are used in frame selection processes where the frame with the

maximum number of preferences satisfied is probably the best frame for interpreting

the input. For example, the print frame will have more preferences satisfied than the

list frame from the query, ‘‘How do I list a file on the Imagen?’’ Of course, that is

because one usually associates Imagen printers with printing rather than listing.

It is important to note that only the best conditions are selected while matching

a frame to an initial meaning representation of some query. For each condition we

determine the ratio of matched to non-matched predicates. The best condition is the

one with the highest ratio.For any condition to be best not all its preferences have

to be satisfied. Indeed, we saw in Chapter 5 that the process of weakening postcon-

ditions and strengthening preconditions is required because local preferences in con-

ditions are not satisfied.

99

6.8. Meaning representation and surface structure

We hav ediscussed meaning representations but not how the system gets there

from surface structure. The system will have a natural language parser as a front

end to analyze natural language input.We intend to try out a number of parsers for

the system and evaluate the performance of each.Shallow representations of

English queries will be produced by the particular parser in use. Examples of such

parsers are discussed in depth by Ball and Huang in Wilks (1986).We believe the

process of understanding language to be semantic and knowledge-based as opposed

to syntax-based and the algorithms that implement this view exploit a notion of

computing the coherence of textual meaning.

One of our parsers exists as part of XTRA, (see Huang, 1985) a machine trans-

lation program, which uses a Semantic Definite Clause Grammar (see Pereira &

Warren, 1985) and the semantics is a modification of that discussed in Wilks

(1975b) coupled with new relaxation mechanisms. XTRA’s distinctive features are

its treatment of conjunctions, its phrase and clause attachment procedures (see

Wilks, Huang & Fass, 1985) and its relaxation features from semantic constraints.

The XTRA system is composed of two phases; parsing and generation. We are only

concerned with the parser from XTRA. The system produces a syntactico-semantic

tree for some input sentence. The format of the tree is borrowed from Bougarev

(1979) though the approaches for getting the representation are quite different.

XTRA produces no ambiguities in its parse tree. In each case slot (see Fillmore,

1978) underneath the verb-sense there are word senses rather than the word from the

original sentence.

Our second parser involves a semantics-driven concept. Work is already under

way on building a semantics driven natural language analyzer which addresses the

well-known linguistics problems of language analysis. The justifications for doing

100

this are the problems with previous efforts and the need for an adequate semantic

analysis program. Ball and Wilks are currently working on an implementation of

preference semantics using case grammar as a semantic base. The system is seman-

tics driven because input sentences are analyzed to identify and correlate semantic

chunks. Prominent semantic chunks are the action or state and the cases related to

these. An object can be in some place at some time and a given action can take place

in some location at some time. Semantics calls syntax to aid in the identification of

semantic chunks.Say, some agent is expected by the semantics. Then a call is made

to the syntactic component to see if the next element of the input can be a noun

phrase. The semantic component expects certain constituents and uses syntax to ver-

ify such expectations.

6.9. Other work on meaning representations

There has been much work on building meaning representations of natural lan-

guage utterances and we can not claim to do justice to all of those here.We shall

begin with representations of natural language utterances on operating systems and

then move on to more general approaches on meaning representation.

The theory of how to represent natural language queries in the Unix Consultant

(see Wilensky et al., 1986) has evolved over a number of years.Initially, the system

used a phrasal analyzer called PHRAN (see Arens, 1986; Wilensky et al., 1984)

which read sentences in English and produced representations to decode their mean-

ings. PHRAN contained a knowledge base of pattern-concept pairs where patterns

were descriptions of literal utterances that had many different levels of abstraction.

For example,<person> <give> <person> <object> is a phrasal pattern. Each pat-

tern had an associated conceptual template which is a piece of meaning representa-

tion. For example, associated with the phrasal pattern<nationality> restaurantis a

101

conceptual template denoting a restaurant that serves <nationality> type food.

PHRAN’s use of patterns and concepts is similar to our use of action templates

and case structures. However PHRAN is a general parser and not specifically geared

towards operating systems. There was no theory of embedding to contend with our

own. Therefore,although PHRAN was a good general mechanism for producing

meaning representations of English it was not very efficient as a parser of queries

about operating systems.

The latest Unix Consultant implementation (see Wilensky et al., 1986) involves

a new parser called ALANA (Augmentable LANguage Analyzer) written by Cox

(1986). ALANA is an extension of the PHRAN parser described above. Although

ALANA is a more advanced parser than PHRAN there is no description of how the

parser may handle multiple action queries. Any discussion of ALANA shows only

how single action queries are handled.Again, there is no description of an alterna-

tive theory that competes with ours of embedding.

Douglass and Hegner (1982) used case frames in the front end for the Unix

Computer Consultant (UCC) system. Case frames were templates representing the

main action of a clause and the constituents of the action, such as the actor and

recipient of the action. The case frames corresponded to logical operations in an

operating system, and therefore formed the main link between English-language

operating system concepts and the formal semantic definitions of specific UNIX

commands. Theproblem with these case frames was that they were too far removed

from natural language input to be useful and also there was no great theory of how

to combine case frames together to formulate good meaning representations of com-

plex queries.

102

The SINIX consultant involves a natural language interface which produces

meaning representations of English sentences. Although the SINIX parser (see

Kemke, 1986, Section 2.6.3) uses case structures to build up sentence case frames

we find no description of a theory of how case structures may be combined effi-

ciently.

Matthews and Pharr (1987) describe a system called USCSH (University of

South Carolina SHell) which is an active intelligent assistance system for UNIX.

Although the dictionary in USCSH contains grammatical information little semantic

information is included, as yet. It is intended that a meaning-structure grammar (see

Chafe, 1970) will be included at a later stage. Their approach to constructing mean-

ing representations of natural language queries involves no discussion of the logical

structure of discourse or temporal ordering of actions.

Although we have described four approaches to building meaning representa-

tions for queries about operating systems there has been much research on building

meaning representations for natural language sentences in general. The IRUS

(Information Retrieval Using the RUS parser) system uses a formal Meaning Repre-

sentation Language (MRL) (see Bates et al., 1986). MRL has a formal declarative

semantics that can be expressed in predicate calculus or procedural semantics (see

Woods, 1981). There is no particular theory of how to embed sequences of actions

here.

Fillmore (1968, 1977) discusses how natural language sentences can be under-

stood using knowledge in a form of case structures.Case structures are frames into

which verbs may be parsed. Fillmore concerns himself more with the syntax of

verbs than their semantics. He says Fillmore (1968), ‘‘The preceding sections have

contained an informal description of a syntactic model for language...’’ (p. 61).

Different verbs may link to a number of different frames and he explains which

103

verbs are constrained to which cases in which frames. Although Fillmore gives a

good description of different verbs and their properties he does not concern himself

with the semantic questions of verbs like print affecting objects like filesor directo-

ries. He does not describe any theory of embedding where different structures for

various verbs can be linked together. He is largely concerned with single action sen-

tences. Fillmore helps us in defining properties of verbs but not how such verbs are

integrated in an operating system consultant.

In Fillmore (1968) we have a discussion on anaphoric processes. Fillmore says,

‘‘ Anaphoric processes are best understood from the point of view of an extended

concept of sentence conjunction. That is, every language has ways of simplifying

sentences connected by conjunctions or subjunctions, and the processes used under

these conditions seem too be exactly the same as those used in sentences connected

in discourse’’ (p. 56). Although this may be a good argument for understanding

anaphoric sentences we believe that this heuristic is true of our theory of embedding.

For example, the query ‘‘How do I list the files in paul.courses?’’ f ollowed by,

‘‘ How do I print them?’’ in a dialogue interpreter should give the same embedding

as ‘‘How do I list paul.courses and then print the files?’’ The representation of the

two separate sentences should be the same as if they were connected.

Schank (1975) has worked on a deep representation of natural language sen-

tences calledconceptual dependency. Schank intends a very deep representation

because he wishes to have a language free form.His representation is similar to our

deep case structures. Schank’s theory entails a reduction of all utterances to combi-

nations of primitive predicateschosen from a set of twelve actionsplus state and

change of state, together with the primitive causation, and seven role relations or

conceptual cases. Schank sets up case frames for primitive acts as opposed to Fill-

more’s concentration on the surface verbs of English.

104

Wilks (1975a, 1975b, 1976, 1978a, 1978b) developed a natural language

understanding program which parsed English text into deep meaning representa-

tions. Wilks’ parser constructed a meaning representation made up oftemplates,

having the basic form ofagent-action-objectwhich are integrated by the use of

paraplatesandinference rules. The templatesare built up fromformulaswhich rep-

resent individual word senses. In the discussion of meaning representations above

there is no discussion of semantic formulas because information about such word

senses would already be maintained in the parser that analyzes English input.

Our deep case structures are like Wilks’ templates as they contain actions,

objects and agents.Wilks’ idea of building paraplates from templates parallels ours

of building embedded action representations from case structures.However Wilks

would have different templates for different clauses whereas we only have different

templates for different verbs. Also Wilks talks of linking paraplates with cases,

whereas we talk of linking case structures by embedding them inside each other to

denote temporal relations. In other words, we are talking of using more pragmatic

structures rather than semantic ones. Of course the semantic structures do exist in

the parser that analyzes input.Another difference between our embedded action

representations and Wilks’ paraplates is that the EREPs are constructed on the fly

whereas Wilks’ paraplates already exist in the system.

Wilks (1976) makes an important point in that we should only put those cases

into a formula that are necessary to specify the meaning of say a verb. For example a

LOCATION is necessary to specify the meaning of living although it need not be

necessary to specify the meaning of drinking.This is the heuristic that we use to

define formulas for the meaning of words in the system.Notice that we do not fall

into the trap of doing what Wilks (1976, p. 27) argues people like Fillmore, Schank,

and the Generative Semanticists should not do.Wilks says that they are involved in

105

‘‘ ...displaying a full underlying structure directlywithout the processes that reach

it.’’ He says, ‘‘I argued earlier that each of those three gav eonly a filled-in, or final,

structure which in itself gives no hints as tohow you get there [his emphasis]’’ (p.

27). Infact, Fillmore has developed a surface oriented view of case whereas Schank

uses a deep case representation. Wilks uses a representation in between the two and

that is the philosophy we hav eused in developing OSCON.

6.10. Embedded representations are useful

Embedded action representations are a precise means of formalizing meaning

relations between UNIX actions. English queries involving interrelated actions can

be understood effectively using these action representations. In particular, EREPs

provide a framework for building domain-specific information about embedded

commands. The most significant feature of EREPs is that because they maintain an

implicit notion of time, or ordering of actions, there is no need to represent temporal

orderings themselves. These are already inherently provided by the representation

itself.

It is important in any natural language system which understands natural lan-

guage queries about operating systems, that there be some mechanism for recogniz-

ing actions, and how they relate to other actions and objects.We believe that the

above theory of embedded meaning representations for actions will be adequate in

this endeavor. The inherent structure of the embedded action representations allows

the system to build up a good temporal ordering of actions and objects. Wilks

(1986) recognized that this ordering was important, ‘‘...our representation must have

the ‘‘one after another’’ f eature that texts have, rather than being static and timeless

like most semantic nets..’’ (p. 10). The temporal ordering of actions is a more prag-

matic characteristic of queries about operating systems that hasn’t been discussed

106

much on other work in meaning representation.

There is much work yet to be done on EREPs.For example, we have not

defined the rules for matching case structures to output from a parser, or promoting

objects form one embedded action to another. There has been no discussion of the

mechanisms involved in rejecting incorrect action relations occurring in user

queries. This would happen if a user query did not match one of the action tem-

plates. For example a PRINT action could never be nested inside a DELETE action

when they apply to the same file because if a file is deleted it is not possible to print

the file. However, we need to investigate what OSCON should do when such errors

are detected. Early detection of pragmatic user errors will increase the efficiency of

the operating system consultant.

Chapter 7: TheOSCONsystem

So far we have discussed a theoretical design of the natural language under-

stander for an operating system consultant.We hav e not put great effort into

describing the understander as a complete unit. Nor have we discussed how that

understander relates to the knowledge base which solves or answers queries.This

chapter deals with a general description of OSCON and the understander. We also

describe the plan understander calledPlanCon, which is a program that computes

the rules of consequence and the rule of composition over Transfer Semantics action

frames.

7.1. Design principles

We hav etaken the approach of building an operating system consultant which

operates in real-time and which embodies a natural language understander. As was

shown in Chapter 2, that happens to be a good approach to building any consultant

system.

We hav e already shown that any good consultant system must provide a

friendly interface to the user. The interface should not require the user to have any

special computer skills, otherwise we defeat the purpose of the system.A natural

language understander will be the best at functioning as a friendly interface as that is

the language of the user. Queries can be posed in English and any subsequent dia-

logue would be in English including the system responses.

We are primarily interested in modeling the UNIX operating system although

other operating systems are of interest.The design of OSCON is intended to be

general enough to give help on many operating systems. That design has been

107

108

motivated by lessons learned in building earlier operating consultants. These sys-

tems, called UCC and Yucca, were discussed in Chapter 2. We hav eincluded two

major design principles in the design of the OSCON system: (1) the principle of

understanding and solving; (2) the principle of a general approach to operating sys-

tem consultation.

7.1.1. The principle of separating understanding and solving

There are two main functions that any consultant system must address. Those

are the functions ofunderstandingand answeringuser queries. The problem of

understanding a query is different to the problem of solving or answering one.

Queries like, ‘‘How do I delete a file?’’ make perfect sense to any computer user

who may have no particular knowledge of operating systems. Deleting files is one of

the most common functions that any computer user may need to perform.The

knowledge that therm command is used to perform this task is not necessary to

understand it. However, general knowledge about files and the act of deleting them

is necessary for solving.

One of the principle design features of our system is that the process of under-

standing a query is separate from that of solving a query. We call this, theprinciple

of separation of understanding and solvingand it has been reported in Hegner

(1987). Problems related to understanding include the control of ambiguity. For

example, in the query, ‘‘How do I print a file with pageheaders?’’ the file may

already have pageheaders and that is different from the file getting pageheaders

when it is printed. The understanding phase of the system involves determining that

ambiguity exists and then resolving that ambiguity.

109

7.1.2. A general consultant

We intend that the system will have an general flavor. By this we mean if some

user asks a query in the context of one operating system, OSCON will have the

capability of answering the query in terms of another. For example, a user may be

asking queries about UNIX and suddenly say, ‘‘How do I use ‘dir’ to find the cre-

ation date of all the files in my directory?’’ Howev er, there is nodir command in

UNIX although there is one in TOPS-20. Of course, the equivalent command for

UNIX is ls -l. It is hoped that OSCON will answer user queries on many operating

systems, although we are focusing on UNIX. Other computer operating systems of

interest are VMS, VM/CMS, and DOS.

7.1.3. Representing principles as architecture

OSCON has a two-module architecture. One module, called the natural lan-

guage understander, has the function of understanding and answering English

queries. Thesecond module, or knowledge base, is detailed and formal. It func-

tions as the solving or answering module. The knowledge base is being constructed

at the University of Vermont by Dr. Steve Hegner. Work on the knowledge base is

discussed extensively in Douglass & Hegner (1982), Hegner & Douglass (1984) and

Hegner (1987). Our architecture is similar to that found in many natural language

interfaces to database systems (see Waltz, 1975, 1978; Hendrix et al., 1978; Martin

et al., 1983; Wallace, 1985).In these systems the formal knowledge base and query

language already exist, and the task is to add a natural language front end. In the

operating system consultant, we are designing both modules to be efficient and tai-

lored specifically for the domain of consulting on systems.The two-module archi-

tecture is one of the principle design features of OSCON. As pointed out by Hegner

(see Hegner 1987, p. 1) the two-module architecture facilitates the important

110

principle of separation of understanding and solving.The two modules are con-

nected by a formal query language called OSquel. A good description of OSquel is

given in Hegner & Douglass (1984).

We hav ealready shown that any system which communicates information on

some domain must possess good knowledge about that domain. A key design princi-

ple of our system is the construction of a detailed formal, knowledge base and

retrieval facility. The knowledge base responds to complex and detailed technical

queries concerning both static and dynamic information.

7.2. An overview of the consultant

There are two ways in which a help utility may be incorporated into a system.

The utility may be designed as an integral component of the system. This approach

may be applied to an existing system by rewriting components which are already

supplied by the help utility. The Cousin interface by Hayes (1983) reflects this strat-

egy. We hope to install the operating system consultant on new systems with very

little effort and that it be visible only to those who wish to use it. The system is con-

ceived entirely as an external utility which may be installed just like a new editor or

compiler. We wish to ensure maximum portability and usability of the system.

The user interface is not intended to be elaborate by any means. Many users

use standard video terminals and OSCON is designed with the intent of providing a

reasonable interface to the UNIX system via such terminals. In particular, the com-

municator will be invoked by typing an appropriate command name to the proces-

sor, and then the query itself can be typed into the system as natural language text.

The system will be transportable to a wide variety of UNIX and UNIX-like

systems. Common Lisp has been promoted as a standard for lisp programmers.

111

Common Lisp will soon become available on a large number of UNIX systems.

Therefore, we are implementing OSCON in Common Lisp. As the knowledge base

research program is not a part of this thesis, we will not discuss it here. However, a

detailed description may be found in Hegner (1987).

The flow of control in OSCON is as follows: Initially, the user’s natural lan-

guage query is translated into a formal query in OSquel. This step resolves any

ambiguity in the natural language query. When this step is completed, the request

for information about the domain is sent to the knowledge base. The next step solves

the formal query and natural language issues are not involved at this stage. The final

stage involves translating the instantiated formal query into a natural language form

suitable for presentation to the user.

7.3. An overview of the understander

The natural language understander parses English sentences into a formal

query language called OSquel.Formal queries are represented in the form <P A Q

U>. P and Q represent preconditions and postconditions for any action A. U repre-

sents the particular person or user performing A.

The understander can be considered in terms of two distinct phases: (1) formal

query generation, and (2) answer production. The formal query generation phase

involves four components. Each component produces a new lev el of meaning repre-

sentation for some query. The need for having various levels of meaning representa-

tion in any interface is discussed by Sparck-Jones (1983). She tells us that in order

to preserve text structure, and in order to do extensive inference, representations at

different levels are required. She describes one current project of building a natural

language front end to a database where different meaning representations must be

utilized.

112

The control flow of the understander proceeds like this: (1) Initially, an English

query is input by the user. The query is parsed into ashallow representationby a

natural language parser. The termshallow representationis used to describe the

output from different parsing techniques. This representation may include some

semantics such as knowledge of word senses.Examples of natural language parsers

we currently use are described by Ball and Huang in Wilks (1986) and by Slator in

Wilks et al. (1987); (2) Each shallow representation is passed to an embedded action

representation (EREP) generator. This component builds semantic representations of

queries from the shallow representation and makes use of semantic case frames

existing in a database. Case labels are attached to various items; (3) Each embedded

action representation is passed to a Transfer Semantics component which maintains

a database of knowledge frames. The Transfer Semantics component is the heart of

the understander. It contains the abstract knowledge about operating systems and

embodies the tasks of frame selection and instantiation; (4) A domain-specific

Transfer Semantics representation is passed to a formal query generator which pro-

duces an uninstantiated formal query to the database in a language called OSquel.

Formal queries are instantiated by the application of a solving process in the knowl-

edge base. The answer generation phase of the understander is concerned with pro-

ducing natural language answers from instantiated queries.

7.4. The PlanCon program

The function of PlanCon is to compute inference rules over Transfer Seman-

tics. Transfer Semantics was described in Chapter 3 and the rules were described in

Chapters 4 and 5.Transfer Semantics on its own is not powerful enough for under-

standing more complex queries and that is why PlanCon is used.Presently, the first

and second rules of consequence and the general rule of composition (ROC0) hav e

113

been implemented.We hav eimplemented the rules of consequence over the PRINT

frame, and the rule of composition for the LIST and PRINT frames.

All frames are to be loaded into the system before any computation begins.

Therefore, object and action frames are input by the programmer. We show the pre-

condition set for the PRINT frame in Figure 7.1.

(pre cond i t i on s

(manda t ory (no t (o - f rame di r e c tory - fi l e)))

(op t i ona l (((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)))))

(((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame pr i n t - queue))

(((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)))))))

Figure 7.1 Precondition set for PRINT.

The first condition in the precondition set is mandatory. The next three condi-

tions are optional. The final optional condition is a default. Interpretingthe above

set, it is noted that the mandatory condition specifies that a directory file should not

be printed.Now, let us not confuse the reader at this point. Of course, it is possible

to print a directory by first listing it and then printing it. Yet, one does not print

directories themselves, and this is what we are concerned with here. The first

114

optional condition specifies a preference that files are printed and their contents are

preferably visible byte sequences. The second optional condition declares in addi-

tion the existence of a printer queue.In order to print a file on the printer it is cer-

tainly useful to have a printer queue.Finally, the third precondition in the set is a

default, and is the same as the first optional condition.We do not worry about pre-

conditions such as the system being up, the terminal working or keyboard on-line.

These are simply assumed. The postcondition set for PRINT is shown in Figure 7.2.

(pos tcond i t i on s

(op t i ona l (((o - f rame non - di r e c tory - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)
(has (o - f rame fil t e r)))))

(o - f rame dev i c e -fi l e))

(((o - f rame non - di r e c tory - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)
(has (o - f rame fil t e r))))))

(((o - f rame non - di r e c tory - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame dev i c e -fi l e))))

Figure 7.2 Postcondition set for PRINT.

There are three optional conditions, the final one delimiting a default. The first con-

dition declares that the file which we saw in the precondition set also exists in the

postcondition set. The file doesn’t disappear after printing as would be the case with

a delete frame. The file still contains visible-byte-sequences although a filter is now

115

also applied. Filters are items such as pageheaders, line numbers and dates.Also a

device file exists to denote default standard output which is the terminal screen.

The second optional condition tells us that a print queue exists and has a print

queue entry. Also, a filter may be applied to the contents of the file.The third post-

condition in the set is again a default and specifies output to a device file.

For each frame there must be some commands that can execute the action.The

commands for printing are shown in Figure 7.3.

(ac t i on s
(op t i ona l (o - f rame ca t)

(o - f rame mor e)
(o - f rame lpr)
(o - f rame pr)
(o - f rame pr i n t)
(o - f rame op t i on - l i s t)))

Figure 7.3 Action set for PRINT.

Printing can be completed with any of the commands in the optional set of actions

and their respective options. Finally, in Figure 7.4 we specify the actor performing

the action or transfer. Any user can print a file and this is represented in the actor

set.

In the preceding examples we make no claim that the action frame components

are in any way complete or sufficient in order to describe the action of printing.

Indeed we expect to extend the precondition and postcondition sets to handle more

complex queries.

116

(ac t or
(op t i ona l (o - f rame us er)))

Figure 7.4 Actor for PRINT.

7.4.1. Computing the first rule of consequence

Say the user asks, ‘‘How do I print a file on the screen?’’. A problem with this

query is that the frame matcher cannot matchfile in the query tonon-directory-file

in the postcondition set for the PRINT action frame. The postconditions in the frame

are too specific. All PlanCon needs to do is to run the first rule of consequence over

the postconditions for the print frame.

After applying the first rule of consequence we get Figure 7.5, which shows

files rather than non-directory-files. The frame matcher will match file from the

query to file in the postcondition set now. The problem of strong postconditions is

solved.

7.4.2. Computing the second rule of consequence

Say, the user has entered the query, ‘‘How do I print a plain file?’’ A ssume that

the print frame has been selected from a number of frames as the candidate that we

should use. The problem here is that plain file is not mentioned in the precondition

set. The frame matcher would not like the print frame at all. However by applying

the first rule of consequence to Figure 7.1 we can derive Figure 7.6.

117

(pos tcond i t i on s

(op t i ona l (((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)
(has (o - f rame fil t e r)))))

(o - f rame fil e))

(((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)
(has (o - f rame fil t e r))))))

(((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame fil e))))

Figure 7.5 Weakening the postconditions for PRINT.

In Figure 7.6 we show the strengthened preconditions for printing. Now the

frame matcher has no problem in matching ‘‘How do I print a plain file?’’ to the first

optional in the set.

7.4.3. Computing the rule of composition

The rule of composition defined that certain frames could be concatenated

together in sequence. For example, the query, ‘‘How do I list a directory and then

print it?’’ could be handled by concatenating the LIST and PRINT frames.The

preconditions for LIST are the complete preconditions for the sequence. In Figure

7.7 we show the optional preconditions from the set for LIST, particular to the above

query.

118

(pre cond i t i on s

(manda t ory (no t (o - f rame di r e c tory - fi l e)))

(op t i ona l (((o - f rame pl a i n - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)))))

(((o - f rame pl a i n - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame pr i n t - queue))

(((o - f rame pl a i n - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)))))))

Figure 7.6 Strengthening the preconditions for PRINT.

(pre cond i t i on s

(op t i ona l (((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s)))))))

Figure 7.7 Selected preconditions for LIST.

The correct optional postcondition for LIST is shown in Figure 7.8.The

selected postcondition represents the output of listing directories coming out on the

119

screen. The next step is to apply this as a precondition to the PRINT frame. These

preconditions for PRINT produce the postcondition shown in Figure 7.9. The rule of

composition for listing and printing has now been completed. Of course, this com-

putation has involved determining what the PRINT frame should have if giv en the

precondition set in Figure 7.7.

(pos tcond i t i on s

(op t i ona l (((o - f rame fil e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame dev i c e -fi l e))))

Figure 7.8 Selected postconditions for LIST.

(pos tcond i t i on s

(op t i ona l (((o - f rame non - di r e c tory - fi l e)
(has (o - f rame con t en t s)

(has (o - f rame vi s i b l e-by t e -s equ e n ce s))))
(o - f rame dev i c e fil e))))

Figure 7.9 Selected postconditions for PRINT.

Chapter 8: Conclusion

A theory of understanding queries about computer operating systems has now

been presented and it is time to summarize what has been done and more important,

what we have to do. Thereare many areas of the problem not covered by the thesis,

while other areas have been discussed adequately. We present first thoughts on

ideas for further work and some problems with our existing framework.

8.1. Summary

The thesis has described a theoretical model of a natural language understander

for an operating system consultant.The first step in doing this was to describe a

good knowledge representation for operating systems. The next step was to define a

set of inference rules which could operate on that representation and derive new

information. It was shown that without inference rules natural language queries

could not be understood. The construction of inference rules involved defining a

language for describing the rules. The language was borrowed from Axiomatic

Semantics. From there, the power of a plan understander, called PlanCon, was

extended by introducing new rules of inference. These new rules extended the rule

of composition in various directions, and covered selective, parallel, and fork com-

position. We demonstrated that the general rule of composition had really defined

the inherent properties of composition by showing cases where each of the other

composition rules collapsed into the general one.

Then we changed the direction of discussion.Instead of working out the

knowledge representation to meet natural language queries (KNOWLEDGE =>

LANGUAGE) we worked out a representation of language to meet knowledge

120

121

(LANGUAGE => KNOWLEDGE). We showed how a theory of meaning represen-

tations for natural language queries could be developed and how that theory would

represent examples of natural language queries. The theory of the understander was

placed in the context of a complete description of OSCON and we described how

PlanCon exercised three of the inference rules over Transfer Semantics.

8.2. Consultation by artificial communication is useful

In developing the work herein we conclude that a natural language operating

system consultant will be useful to those people who wish to use one.We hav enot

only shown why an artificial consultant would be useful, but have also developed a

theory of an understander which could be incorporated within one. The imple-

mented system will take natural language input and parse it into some meaning rep-

resentation and that can be further translated into a detailed domain specific repre-

sentation. We conclude that the knowledge representation and planning components

of any consultant system are a major part of its final success.That is why we con-

centrated so heavily upon them in Chapters 4, 5, and 6.

Detailed representations of the input queries can be passed to a knowledge base

where answers to queries can be produced. We believe that if the knowledge repre-

sentation is extensive enough, and the natural language parser circumscribes a large

part of English query formation, then the consultant would be a good approximation

of what human consultants do. Of course, the program may be slow, and a good

indicator of that is the extent of the theory in this thesis. And remember, we hav e

only described the understander here. However, we do not worry about such slow-

ness. In the future, computer architectural developments and hardware implementa-

tions will increase the speed of computers dramatically. Also, using a artificial con-

sultant would certainly be better than looking through a large set of manual pages or

122

using a simple key-on-command system, or even worse by asking a computer

expert. Computer experts can be the worst consultants of all.

8.3. Towards better consultants

Although we have dev eloped a theory of an understander for queries about

operating systems, there are many ideas that have not been explored. Inorder to

build better consultants these areas must also be investigated. Let’s talk about some

of the things that we haven’t done yet.

One of the major components that our theory lacks is a formulation of answer

generation phase for OSCON. ‘‘What happens when the query solver has formu-

lated an answer to a query?’’, ‘‘How do we express that answer in English?’’ Of

course, the major aim of the thesis was not to do this and it is certainly an area of

further investigation. We postulate that Transfer Semantics will be useful in pre-

senting answers to the user. It is suspected that answer generation will not be too

difficult as the query solver produces answers in the form <P A Q U>. The answer-

ing process may involve an inv ersion of the meaning representation approach in

conjunction with Transfer Semantics.

There was no development of a theory of how natural language sentences could

be parsed into syntactico-semantic structures. However, this is a large area of

research and much work has already been done there. As was already mentioned in

Chapter 7 we would hope to use existing parsers as front ends to do this.

There has been no in-depth discussion of the frame selection mechanism or

how knowledge is selected from meaning representations.We described briefly that

frames would be selected on a preference basis where the frame with the most satis-

fied over non-satisfied matches is the right one. However there are better detailed

123

ways of selecting frames rather than simple preference. This is an area of future

study.

8.4. Detection of user misconceptions

A good consultant system must have some way of deciding and reporting that

the user is making mistakes while using the program.For example, say a user asks

the query, “How do I print a file with the -Z option?”. “-Z” is not an option on print-

ing. Nor, can -Z be inferred for printing. The action frame forprinting does not

specify a formula of the form ({P} A {Q}) because A is not satisfied. The user

could be informed that he is trying to do something impossible.We also hope to

investigate the possibility of recognizing ill-formed embedding. For example, the

query, “How do I delete my files and then list them?” doesn’t make much sense at

all. Filescannot be listed after they are deleted. Error checking components could

be added to the system where errors would be detected at early stages and therefore

not passed on to the knowledge base. The knowledge base would find out that the

queries were incorrect but that would happen a lot later, and therefore is less effi-

cient. It is envisaged that PlanCon will be able to detect errors from implicit plans

existing in user queries.

8.5. The necessity of understanding context

One major problem which must be tackled is the understanding of user queries

in context. For example, a user may ask, ‘‘How do I print the file paul on the Ima-

gen?’’ and then say, after a few more sentences, ‘‘What happened with paul?’’.

There must be a mechanism for sorting temporal representations of sentences on a

stack and pulling them off later when they are needed. This is where our theory of

embedded representations comes in. We do not think of contextual understanding in

124

terms of single sentences but embedded representations of actions. Two or more

queries would produce a concatenated representation of two or more sentences.Of

course, we could not store representations every time someone asks a question.

There would be too many stored and this would violate our minimal storage hypoth-

esis. Thereneeds to be some theory of how to forget information in the EREPs as

time goes on.

A useful element of any embedded temporal representation is evidence offocus

(see Carberry, 1985). For example, if someone is asking a lot of questions about

printing, then many of the action frames on the embedded stack will involve PRINT

frames. That is useful to know because it will aid in understanding and frame selec-

tion. If a user seems to be asking queries about printing, and OSCON recognizes

that, then it will help in understanding subsequent queries. Also if two frames have

the same number of satisfied preferences, it would be useful to know about focus as

OSCON could then take a better shot at selecting the correct frame.

8.6. The representation of belief

One major area of further investigation is the representation of belief in the

system. Belief models are useful as an aid for understanding why the user makes

mistakes in a dialogue system.The emphasis in this area is to consider situations

where belief structures of the user differ radically from the beliefs and plans of

OSCON. This is useful for the modeling of both cooperative and adverse situations

where a system must have a model of what its interlocuter does and does not know.

Good discussions of belief models are found in Wilks & Ballim (1987) and

Ballim (1986). Barnden (1986) describes an alternative method of representing

belief. We intend to include ideas about belief representation from Wilks & Bal-

lim’s and Barnden’s models in OSCON.Ballim (1986) proposes a model for

125

computing the beliefs of others on a default basis with emphasis on the notion of

self-knowledge. Abelief model will be particularly useful in developing representa-

tions of user knowledge and determining whether a user is naive or an expert. The

answer generation mechanism would be able to present answers to the user depend-

ing on whether the user has a detailed knowledge of operating systems or not. Any

belief generator allows a system to develop a good representation of what the user

believes about the system. The belief system will be useful in determining when the

user is misinterpreting the system by believing that it is communicating about one

system (say, TOPS-20) while it is really communicating about another (say, UNIX).

One of the major functions of the understander is to decide the intent of the

user. The intent of a user is determined after frame selection and instantiation occur.

When some frame has been instantiated, there will be a primary unknown within

that frame. For example, with the query, ‘‘How do I print a file on the laser printer?’’

the action component (A) in the frame for printing will not be instantiated.There-

fore, OSCON marks the action component of the frame as being the information

required. Inthe case of a query like, ‘‘What happens if I delete all my files?’’ the

precondition is matched, yet the postcondition is not specified and is therefore the

information that the user requires. Belief models will also help to determine the

intent of the user.

The above ideas are currently under investigation and we hope to report on

them soon. All of these will help toward building better consultant systems.We

will close with a question raised by Wilensky et al. (1984,p. 590) , ‘‘Probably the

most significant problem in UC (Unix Consultant) involves representational issues.

That is, how can the various entities, actions and relationships that constitute the UC

domain best be denoted in a formal language?’’ I t is hoped that this thesis makes a

start in answering this question and many more.

References

Algai ́c, S. and M.A. Arbib (1978)The design of well-structured and correct pro-
grams. New York: Springer-Verlag.

Alterman, Richard (1986)An adaptive planner. In Proc. Fifth National Conference
on Artificial Intelligence (AAAI-86), Philadelphia, PA, Vol. 1 (Science), pp.
65-69, August.

Arens, Yigal (1986)CLUSTER: An approach to contextual language understand-
ing. Report No. UCB/CSD 86/293, Computer Science Division (EECS), Uni-
versity of California, Berkeley, California 94720, April.

Ballim, Afzal (1986)The computer generation of nested points of view. Master’s
thesis, Computer Science Department, Dept. 3CU, Box 30001, New Mexico
State University, Las Cruces, New Mexico, NM 88003-0001.

Barnden, John (1986)A viewpoint distinction in the representation of propositional
attitudes. In Proc. Fifth National Conference on Artificial Intelligence
(AAAI-86), Philadelphia, PA, Vol. 1, pp. 411-415, August.

Bates, Madeleine, M.G. Moser & David Stallard (1986)The IRUS transportable
natural language database interface. Expert Database Systems, In Proc. First
International Workshop, Larry Kerschberg (Ed.), pp. 617-630, Benjamin/Cum-
mings Publishing Company, Inc.

Billmers, Meyer A. & Michael G. Garifio (1985)Building knowledge-based operat-
ing system consultants. In Proceedings of the Second Conference on Artificial
Intelligence Applications, pp. 449-454, Miami Beach, Florida, December.

Bobrow, D.G. & T. Winograd (1977)An overview of KRL, a knowledge representa-
tion language. Cognitive Science, Vol. 1, No. 1, pp. 3-46.

126

127

Bougarev, Bran (1979)Automatic Resolution of Linguistic Ambiguities. Technical
Report No. 11, University of Cambridge Computer Laboratory, Cambridge,
United Kingdom.

Brachman, R.J. (1979)On the epistemological status of semantic networks. In
Associative Networks: Representation and use of knowledge by computers, pp.
3-50, N.V. Findler (Ed.). New York: Academic Press.

Carberry, Sandra (1983)Tr acking user goals in an information-seeking environ-
ment. In Proc. Second National Conference on Artificial Intelligence
(AAAI-83), pp. 59-63, University of Maryland and George Washington Uni-
versity, Washington, DC, August.

________ (1985)A pra gmatics-based approach to understanding intersentential
ellipsis. In Proc. 23rd Annual Conference of the Association for Computa-
tional Linguistics, pp. 188-197, Chicago, Illinois, July.

Chafe, W.L. (1970)Meaning and structure of language. Chicago, Illinois: Univer-
sity of Chicago Press.

Cox, Charles A. (1986)ALANA Augmentable LANguage Analyzer. Report No.
UCB/CSD 86/283, Computer Science Division (EECS), University of Califor-
nia, Berkeley, California 94720, January.

Dearholt, D.W.; R.W. Schvaneveldt & F.T. Durso (1985)Properties of networks
derived from proximities. Memoranda in Computer and Cognitive Science,
Memorandum MCCS-85-14, Computing Research Laboratory, Dept. 3CRL,
Box 30001, New Mexico State University, Las Cruces, NM 88003-0001.

Douglass, Robert J. & Stephen J. Hegner (1982)An expert consultant for the UNIX
operating system: Bridging the gap between the user and command language
semantics. In Proc. Fourth National Conference of the Canadian Society for
Computational Studies of Intelligence (CSCSI)/SCIEO Conference, pp.
119-127, Saskatoon, Saskatchewan, May.

Fass, D.C. (1986a)Collative Semantics: a description of the Meta5 program. Mem-
oranda in Computer and Cognitive Science, Memorandum MCCS-86-23,

128

Computing Research Laboratory, Box 30001, New Mexico State University,
Las Cruces, NM 88003-0001.

________ (1986b)Collative Semantics: an approach to coherence. Memoranda in
Computer and Cognitive Science, Memorandum MCCS-86-56, Rio Grande
Research Corridor, Computing Research Laboratory, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001.

Fass, D.C. & Yorick Wilks (1983) Preference semantics, ill-formedness and
metaphor. American Journal of Computational Linguistics, Vol. 9, pp.
178-187.

Fikes, R.E. & N.J. Nilsson (1971)STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, Vol. 2, pp.
189-208.

Fillmore, C.J. (1968)The case for case. In Universals in Linguistic Theory, E. Bach
and R. Harms (Eds.), pp. 1-90. New York: Holt, Rinehart and Winston.

________ (1977)The case for case reopened. In Syntax and Semantics, Peter Cole
and Jerrold M. Sadock (Eds.), pp. 59-81. New York: Academic Press.

Floyd, R.W. (1967)Assigning meanings to programs. In Mathematical Aspects of
Computer Science, Proc. American Mathematical Society, Symposium in
Applied Mathematics, Vol. 19, J. T. Schwartz (Ed.), Providence, Rhode Island,
pp. 19-31.

Gabrielan, A. & M.E. Stickney (1987)Hierarchical representation of causal knowl-
edge. Proc. Western Conference on Expert Systems (WESTEX-87), pp. 82-89,
Disneyland Hotel, Anaheim, California, July.

Goldstein, I.P., & R.B. Roberts (1977)Nudge, a knowledge-based scheduling pro-
gram. In Proc. Fifth International Joint Conference on Artificial Intelligence
(IJCAI-77), pp. 257-263, Cambridge, Mass.

Hayes, Philip J. (1982)Uniform help facilities for a cooperative user interface. In
Proc. National Computer Conference, pp. 469-474, Houston, Texas.

129

Hayes, Philip J. & Pedro A. Szekely (1983)Graceful interaction through the
COUSIN command interface. International Journal of Man-Machine Studies,
Vol. 19, pp. 285-306.

Hegner, Stephen J. (1987)Representation of command language behavior for an
operating system expert consultation facility. Technical Report CS/TR87-02,
CS/EE Department, University of Vermont, Burlington, Vermont, USA.

Hegner, Stephen J. & Robert J. Douglass (1984)Knowledge base design for an
operating system expert consultant. In Proc. of the Fifth National Conference
of the Canadian Society for Computational Studies of Intelligence (CSCSI),
pp. 159-161, London, Ontario, December.

Hendrix, G.G., E.D. Sacerdoti, D. Sagalowicz & J. Slocum (1978)Developing a
natural language interface to complex data. ACM Transactions on Database
Systems (TODS), Vol. 3, No. 2, pp. 105-147, June.

Hoare, C. A. R. (1969)An axiomatic basis for computer programming. Communi-
cations of the ACM, Vol. 12, No. 10, pp. 576-583, October.

Hoare, C.A.R. & N. Wirth (1973)An axiomatic definition of the programming lan-
guage PASCAL. Acta Informatica, Vol. 2, pp. 335-355.

Huang, Xiuming (1985)Machine translation in the semantic definite clause gram-
mars formalism. Memoranda in Computer and Cognitive Science, Memoran-
dum MCCS-86-72, Computing Research Laboratory, Dept. 3CRL, Box 30001,
New Mexico State University, Las Cruces, NM 88003-0001.

Kautz, Henry A. & James F. Allen (1986)Generalized plan recognition. In Proc.
Fifth National Conference on Artificial Intelligence (AAAI-86), Philadelphia,
PA, Vol. 1 (Science), pp. 32-37, August.

Kemke, Christal (1986)The SINIX Consultant — Requirements, Design, and Imple-
mentation of an intelligent Help System for a UNIX Derivative. Universitat
des Saarlandes, KI-Labor (SC-Project), Bericht Nr. 11, October.

130

________ (1987)Representation of domain knowledge in an intelligent help sys-
tem. In Human-Computer Interaction — INTERACT ’87, H.J. Bullinger and
B. Shakel (Eds.), pp. 215-220. Amsterdam: Elsevier Science Publications B.V.
(North-Holland).

Litman, Diane J. & James F. Allen (1984)A plan recognition model for clarification
subdialogues. In Proc. Tenth International Conference on Computational Lin-
guistics, and 22nd Annual meeting of the Association for Computational Lin-
guistics (COLING-84), pp. 302-311, Stanford, California, July.

Martin, Paul, Douglas Appelt & Fernando Pereira (1983)Tr ansportability and gen-
erality in a natural-language interface system. In Proc. Eighth International
Joint Conference on Artificial Intelligence (IJCAI-83), pp. 573-581, Alan
Bundy (Ed.), Karlsruhe, West Germany, August.

Matthews, Manton & Walter Pharr (1987)Knowledge acquisition for active assis-
tance. Preprints of the First International Workshop on Knowledge representa-
tion in the UNIX help domain, University of California, Berkeley, California,
December.

McDonald, James E., J.D. Stone & L.S. Liebelt (1983)Searching for items in
menus: The effects of organization and type of target. In Proceedings of the
27th Annual Meeting of the Human Factors Society, pp. 834-837, Norfolk,
Santa Monica, October.

McDonald, James E., Donald W. Dearholt, Kenneth R. Paap & Roger W. Schvan-
ev eldt (1986)Human factors in computing systems.Proc. CHI’86 conference,
Special issue of the SIGCHI Bulletin, pp. 285-290, Marilyn Mantei & Peter
Orbeton (Eds.), Boston, Mass., April.

McDonald, James E. & Roger W. Schvaneveldt (1987) The application of user
knowledge to interface design. Memoranda in Computer and Cognitive Sci-
ence, Memorandum MCCS-87-93, Computing Research Laboratory, Dept.
3CRL, Box 30001, New Mexico State University, Las Cruces, NM
88003-0001.

131

Mc Kevitt, Paul (1987)Natural language interfaces in computer aided instruction
— What happened before and after the 80s AICAI coup. In Proc. Fourth Inter-
national Symposium on Modeling and Simulation Methodology, University of
Arizona, Tucson, Arizona, January.

Minsky, Marvin (1975)A framework for representing knowledge. In The psychol-
ogy of computer vision, P.H. Winston (Ed.), New York: McGraw-Hill.

Owicki, S. & D. Gries (1976a)An axiomatic proof technique for parallel programs
I. Acta Informatica, Vol. 6, pp. 319-340.

________ (1976b)Verifying properties of parallel programs: an axiomatic
approach. Communications of the ACM, Vol. 19, pp. 279-285.

Pagan, Frank G. (1981)Formal specification of programming languages: A
panoramic primer. Englewood Cliffs, New Jersey: Prentice-Hall.

Pelavin, Richard N. & James F. Allen (1987)A model of concurrent actions having
temporal extent. In Proc. Sixth National Conference on Artificial Intelligence
(AAAI-87), pp. 246-250, Seattle, Washington, Vol. 1, July.

Pereira, Fernando C.N. & D. H. D. Warren (1980)Definite clause grammars for lan-
guage analysis — A survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, Vol. 13, No. 3, pp. 231-278, May.

Pollack, Martha E. (1986)A model of plan inference that distinguishes between the
beliefs of actors and observers. In Proc. of the 24th Annual Meeting of the
Association for Computational Linguistics (ACL) Conference, pp. 207-214,
Columbia University, New York, New York, June.

Sandewall, Erik & Ralph Ronnquist (1986)A representation of action structures. In
Proc. Sixth National Conference on Artificial Intelligence (AAAI-87), Seattle,
Washington, Vol. 1, pp. 89-97, July.

Schank, R.C. (1975)Conceptual information processing. Amsterdam: North-Hol-
land.

132

Schank, R.C. & R.P. Abelson (1977)Scripts, plans, goals and understanding: an
enquiry into human knowledge structures. Hillsdale, New Jersey: Lawrence
Erlbaum Associates.

Sparck-Jones, Karen (1983)Shifting meaning representations. In Proc. Eighth
International Joint Conference on Artificial Intelligence (IJCAI-8), Alan Bundy
(Ed.), pp. 573-581, Karlsruhe, West Germany, August.

Stanat, Donald F. & David F. McAllister (1977)Discrete mathematics in computer
science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Tyler, Sherman W. & Siegfried Treu (1986)Adaptive interface design: a symmetric
model and a knowledge-based implementation. The third ACM-SIGOIS con-
ference on Office Information Systems, Association of Computing Machinery,
SIGOIS Bulletin (formerly SIGOA Bulletin), Vol. 7, Nos. 2-3, pp. 53-60,
Summer-Fall.

Wallace, Mark (1985)Communicating with databases in natural language. Chich-
ester, England: Ellis Horwood Limited.

Waltz, David (1975)Natural language access to a large database: an engineering
approach. Advance papers for the Fourth International Joint Conference on
Artificial Intelligence (IJCAI-75), pp. 868-872, Tbilisi, Georgia, USSR,
September.

Waltz, David (1978)An English language question answering system for a large
relational database. Communications of the ACM, Vol. 21, No. 7, pp.
526-539, July.

Wilensky, Robert (1982)Talking to UNIX in English: An overview of an On-Line
Consultant. Report No. UCB/CSD 82/104, Computer Science Division
(EECS), University of California, Berkeley, California 94720, September.

________ (1986)Some problems and proposals for knowledge representation.
Report No. UCB/CSD 86/294, Computer Science Division (EECS), University
of California, Berkeley, California 94720, May.

133

________ (1987)Some complexities of goal analysis. Preprints of the Third Con-
ference on Theoretical Issues in Natural Language Processing (TINLAP-3),
Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State
University, pp. 97-99, January.

Wilensky, Robert, Yigal Arens & David Chin (1984)Talking to UNIX in English:
An overview of UC. Communications of the ACM, Vol. 27, No. 6, pp.
574-593, June.

Wilensky, Robert, Jim Mayfield, Anthony Albert, David Chin, Charles Cox, Marc
Luria, James Martin and Dekai Wu (1986) UC — a progress report. Report
No. UCB/CSD 87/303, Computer Science Division (EECS), University of Cal-
ifornia, Berkeley, California 94720, July.

Wilks, Yorick (1975a)An intelligent analyser and understander of English. Com-
munications of the Association of Computing Machinery (ACM), Vol. 18, pp.
264-274.

________ (1975b)A preferential, pattern-seeking, semantics for natural language
inference. Artificial Intelligence, Vol. 6, No. 1, pp. 53-74.

________ (1976)Processing case. Technical Report, Department of Artificial Intel-
ligence, University of Edinburgh, Edinburgh, Scotland. Also in American
Journal of Computational Linguistics, microfiche 56.

________ (1978a)Good and bad arguments about semantic primitives. Communi-
cation and Cognition, Vol 10., No. 3/4, pp. 181-221.

________ (1978b)Making preferences more active. Artificial intelligence, Vol. 11,
pp. 197-223.

________ (1986)Projects at CRL in Natural Language Processing. Memoranda in
Computer and Cognitive Science, Memorandum MCCS-86-58, Computing
Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State University,
Las Cruces, NM 88003-0001.

134

Wilks, Yorick; Xiuming Huang and Dan Fass (1985)Syntax, Semantics and Right
Attachment. In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (IJCAI-85), pp. 779-784, Los Angeles, California.

Wilks, Yorick & Afzal Ballim (1987)Multiple Agents and the Heuristic Ascription
of Belief. In Proc. of the Tenth International Joint Conference on Artificial
Intelligence (IJCAI-87), Vol. 1, pp. 118-124, Milan, Italy.

Wilks, Yorick, Dan Fass, Cheng-Ming Guo, James E. McDonald, Tony Plate &
Brian M. Slator (1987)A tractable machine dictionary as a resource for com-
putational semantics. Memoranda in Computer and Cognitive Science, Mem-
orandum MCCS-87-105, Computing Research Laboratory, Dept. 3CRL, Box
30001, New Mexico State University, Las Cruces, NM 88003-0001.

Woods, W.A. (1981)Procedural semantics as a theory of meaning. In Elements of
Discourse Understanding, A. Joshi, B.L. Webber and I. Sag (Eds.). Cambridge,
Mass.: Cambridge University Press.

Yun, David Y. Y. & D. Loeb (1984)The CMS-HELP expert system. In Proc. of the
International Conference on Data Engineering, IEEE Computer Society, pp.
459-466, Los Angeles, California.

